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Abstract

Developing new deep learning methods for medical image analysis is a prevalent

research topic in machine learning. In this paper, we propose a deep learning

scheme with a novel loss function for weakly supervised breast cancer diag-

nosis. According to the Nottingham Grading System, mitotic count plays an

important role in breast cancer diagnosis and grading. To determine the cancer

grade, pathologists usually need to manually count mitosis from a great deal of

histopathology images, which is a very tedious and time-consuming task. This

paper proposes an automatic method for detecting mitosis. We regard the mi-

tosis detection task as a semantic segmentation problem and use a deep fully

convolutional network to address it. Different from conventional training da-

ta used in semantic segmentation system, the training label of mitosis data is

usually in the format of centroid pixel, rather than all the pixels belonging to

a mitosis. The centroid label is a kind of weak label, which is much easier to

annotate and can save the effort of pathologists a lot. However, technically this

weak label is not sufficient for training a mitosis segmentation model. To tackle

this problem, we expand the single-pixel label to a novel label with concentric
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circles, where the inside circle is a mitotic region and the ring around the in-

side circle is a “middle ground”. During the training stage, we do not compute

the loss of the ring region because it may have the presence of both mitotic

and non-mitotic pixels. This new loss termed as “concentric loss” is able to

make the semantic segmentation network be trained with the weakly annotat-

ed mitosis data. On the generated segmentation map from the segmentation

model, we filter out low confidence and obtain mitotic cells. On the challeng-

ing ICPR 2014 MITOSIS dataset and AMIDA13 dataset, we achieve a 0.562

F-score and 0.673 F-score respectively, outperforming all previous approaches

significantly. On the latest TUPAC16 dataset, we obtain a F-score of 0.669,

which is also the state-of-the-art result. The excellent results quantitatively

demonstrate the effectiveness of the proposed mitosis segmentation network

with the concentric loss. All of our code has been made publicly available at

https://github.com/ChaoLi977/SegMitos_mitosis_detection.

Keywords: Breast cancer grading, Fully convolutional network, Mitosis

detection, Weakly supervised learning

1. Introduction

The most widely used invasive breast cancer grading system is the Notting-

ham Grading System (Elston & Ellis, 1991), which consists of three components:

nuclear pleomorphism, tubule formation and mitotic count. Among them, mi-

totic count is the most important one since the propagation of cancer is mainly5

governed by cell division. Generally, the mitosis figures are marked manually

by pathologists on the Hematoxylin and Eosin (H&E) stained slides. Counting

mitosis manually is very time-consuming and subjective, thus it is extremely

useful to develop an automatic detection method, which is capable of mak-

ing this process more efficient and alleviating the bias of results from different10

pathologists.

However, detecting mitosis from H&E stained High Power Fields (HPFs)

faces challenges in the following aspects: (1) There exist four phases (prophase,
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metaphase, anaphase and telophase) during the development of mitosis, more-

over, each phase among these four phases has very diverse shapes and texture15

configurations. In addition, a nucleus in the telophase splits into two distinct

parts, but it should still be counted as one cell. Fig. 1(a) shows some mitotic cells

with a diversity of appearances. (2) Many non-mitotic cells are very similar to

mitotic cells in appearance, such as apoptotic cells and some dense non-mitotic

nuclei. They all appear as dark blobs in H&E stained histopathology images.20

For instance, the last three samples in Fig. 1(b) show non-mitotic cells that

have similar appearances with mitosis. (3) The processing of slide acquisition

may introduce artifacts and unwanted objects, which further complicates this

detection problem. Moreover, different conditions in preparation of tissues may

also result in diversities in the appearances of the histopathology figures, which25

makes this task more challenging.

In recent years, many research works have been devoted to automatic mito-

sis detection. Most of these methods consist of two components: (1) A coarse

method to locate the candidates of mitotic cells; (2) a more sophisticated classi-

fier to classify the candidate patches produced from the first step. In this field,30

the most common method to locate candidate mitoses is the LoG (Laplacian

of Gaussian) response on blue ratio images, which aims at finding darker re-

gions. Then hand-crafted features or convolutional features are extracted from

the candidate patches and fed into the following classifiers. The frequently used

classifiers include SVM (Cortes & Vapnik, 1995), Random Forest (Breiman,35

2001), AdaBoost (Freund & Schapire, 1995), deep convolutional neural network

(LeCun et al., 1998), etc. Though IDSIA (Cireşan et al., 2013) directly uses a

slide-window manner in the detection stage, the vast amounts of windows make

it significantly time-consuming.

Unlike these methods, we propose a method that solves the mitosis detection40

task by the virtue of a semantic segmentation model. We predict the category

of each pixel and then directly infer the locations of mitotic cells from the

segmentation map.

Our method, called SegMitos, is illustrated in Fig. 2. We train a segmen-
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(a) mitotic cells

(b) non-mitotic cells

(c) pixel-level label

(d) centroid label

Figure 1: Examples of different types of cells and labels. (a) shows mitotic cells. (b) shows

non-mitotic cells where the last three samples have similar appearances with mitotic cells. (c)

shows the pixel-level label of the mitoses in (a). (d) shows the centroid label of the mitoses

in (a). The single annotated pixel in (d) is represented by a large dot for better view.
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tation network based on fully convolutional network (FCN) (Long et al., 2015)45

with the mitosis data. The SegMitos model produces a segmentation map where

each pixel represents its confidence of belonging to the mitosis class. We pro-

cess the response map with a Gaussian filter in order to reduce image noise.

Then an adaptive binarization process is applied to yield segmentation blobs.

For these blobs, we calculate their areas and mean confidence scores. Finally,50

we obtain detection results by using a filtering mechanism based on these t-

wo features. The SegMitos model is applied in an end-to-end (image-to-image)

fashion without using sliding window method, hence the detection is very fast

and efficient.

In mitosis benchmark datasets, there are two types of annotations. The55

first one is pixel-wise that precisely annotates all pixels of every mitotic cell, as

shown in Fig. 1(c). The second one is the centroid label as shown in Fig. 1(d)

which only marks a single pixel in the central zone of mitotic cell. To train a

segmentation model, the pixel-wise label is suitable while the centroid label is

not. Therefore, we propose a novel concentric label based on the weak centroid60

annotation. Firstly, we use a circle which centered at the annotated pixel as

an estimated mitotic region. Then considering that there may be some mitotic

pixels outside the circle, we encompass the mitotic circle using a larger circle.

We take the ring between the two circles as a neutral region. We ignore the

computation of the loss within the “middle ground” so that this region makes65

no contribution to the parameter learning of the network. The mitotic circle

and neutral ring constitute a concentric label, and the tailored loss computation

method forms a concentric loss. By means of the proposed concentric label and

loss, we can train a segmentation model in a weakly supervised way.

To evaluate the proposed method, we conduct experiments on four mitosis70

detection datasets. On the ICPR 2014 MITOSIS dataset (MITOS-ATYPIA-14,

2014) and AMIDA13 dataset (Veta et al., 2015), we achieve better performance

than the state-of-the-art methods with remarkable improvements. On the lat-

est TUPAC16 (Veta et al., 2018) dataset, our method also produces the best

performance.75
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Figure 2: The SegMitos model trained with concentric label for mitosis detection. In the

label map, the small white circle denotes the estimated mitotic region and the green ring

denotes the ignored region when computing loss. Segmentation network yields a pixel-wise

segmentation map. Then a smooth and a binary processing are applied to the segmentation

map, aiming to yield some segmented blobs. Finally, we apply a morphological filtering step

based on the confidence score and area of the segmented objects. The green circles in the

bottom left corner are true positives.
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In this paper, we mainly have three contributions. (1) We propose a nov-

el concentric label as well as a concentric loss, making it possible to train a

dense prediction model with weak annotation. To our knowledge, this is the

first research that formulates a concentric loss function to train a semantic seg-

mentation network for weakly supervised mitosis detection. (2) We design an80

automatic and practical system for detecting mitosis in histopathology images.

We validate our method on almost all mitosis detection benchmarks and achieve

state-of-the-art performances on all these datasets. (3) We deploy a semantic

segmentation model to solve the mitosis detection problem. We abandon the

common two-step strategy which is composed of segmentation and classification.85

Though the filtering of the segmented candidates in our method can be regarded

as a classification procedure to a certain extent, our classifier is very straight-

forward and merely utilizes the output of segmentation model as features. Our

method mainly focuses on the segmentation model while other methods focus

on the patch-based classifiers.90

2. Related work

Recently, many methods for automatic mitosis detection from histopatholo-

gy slides images have been proposed. Some methods (Sommer et al., 2012; Veta

et al., 2013; Irshad et al., 2013; Tek et al., 2013; Paul & Mukherjee, 2015) u-

tilize a variety of hand-crafted features, including morphological and statistical95

features. The most commonly used morphological features are area, perime-

ter, eccentricity, major axis length, minor axis length, equivalent diameter, etc.

While the frequently used statistical features include the mean, median, variance

of various color channels, color histogram features, color ratios, etc. Researcher-

s try to use these features to reflect the appearance characteristics of mitosis.100

However, since the mitotic cells have varieties of appearances, it is hard to man-

ually design features to distinguish mitosis from normal cells very accurately.

Convolution neural networks (CNN) based methods have revolutionized the

field of computer vision. They have achieved many state-of-the-art results on a

7
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variety of tasks including image classification (Krizhevsky et al., 2012; Simonyan105

& Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Tang et al., 2016, 2017;

Wang et al., 2018), object detection (Girshick et al., 2014; Girshick, 2015; Ren

et al., 2015; Li et al., 2017; Tang et al., 2018), and image segmentation (Long

et al., 2015; Xie & Tu, 2015; Shen et al., 2017b). Recently, many deep learning

based methods (Shen et al., 2017a; Zhou et al., 2017; Wang et al., 2017; Yin110

et al., 2018) have been applied to medical image analysis tasks and achieve

promising results. Shen et al. (Shen et al., 2017a) take advantage of multi-stage

multi-recursive-input fully convolutional networks(M2FCN) to detect neuronal

boundary. In their proposed framework, the multiple side outputs from the lower

stage are fed into the next stage, providing multi-scale contextual information115

for the consecutive learning. To improve the segmentation accuracy of pancreas,

Zhou et al. (Zhou et al., 2017) apply a fixed-point model using a predicted

segmentation mask to shrink the input region. The smaller input region leads

to more accurate segmentation for this small organ.

Some CNN based approaches have also been proposed for addressing the mi-120

tosis detection problem. IDSIA (Cireşan et al., 2013) uses a deep convolutional

neural network as a pixel classifier. The classifier is trained to distinguish mi-

totic patches from normal patches. In the detection stage, the trained classifier

is applied to breast histopathology images with a sliding window manner, which

is computationally demanding. Though the IDSIA won the 2012 mitosis detec-125

tion contest (Roux et al., 2013) and AMIDA13 challenge (Veta et al., 2015), the

poor efficiency prohibits its application in clinical practice. Wang et al. (Wang

et al., 2014) produce candidate patches and then utilize classifiers to classify

these patches. They take advantage of hand-crafted features and convolutional

features to train classifiers separately. To improve the accuracy, they also use130

both types of features to train a more accurate classifier. CasNN (Chen et al.,

2016a) uses two networks to build a cascade detection system. The first network

is a coarse retrieval network that locates candidates of mitosis, and the second

network is a fine discrimination model that classifies these candidate patches.

Lunit (Paeng et al., 2017) trains a deep classification CNN with image patches.135
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In order to reduce the false positive rate, it uses a two step training procedure.

DeepMitosis (Li et al., 2018) applies a proposal-based deep detection network

to the mitosis detection task and utilizes a patch-based deep verification net-

work to improve the accuracy. In our work, instead of using the convolutional

network as a patch classifier, a patch feature extractor or an object detector,140

we deploy the network to perform semantic segmentation.

Many methods firstly segment the images to seek candidates of mitosis, and

then classify these candidates to produce the final detections. Irshad (Irshad

et al., 2013) transforms the RGB images to blue ratio images and then computes

the LoG response on them. Candidates are produced through morphological145

processing, and then be classified by a decision tree classifier. Wang et. al

(Wang et al., 2014) utilize a similar candidate segmentation method as Irshad

(Irshad et al., 2013), but apply convolutional neural network and Random Forest

(Breiman, 2001) as classifiers. Paul and Mukherjee (Paul & Mukherjee, 2015)

segment cells using the maximization of relative-entropy between the cells and150

the background, and then classify the segmented cells by the Random Forest

classifier.

Unlike these approaches, we use a fine segmentation model to produce pixel-

level predictions and then directly obtain detection results from the segmenta-

tion probability map. Our method mainly focuses on the segmentation part.155

Though we also classify the segmented candidates, the classification stage in

our method is very straight-forward and easy. On the contrary, others’ meth-

ods usually focus on the classification of mitosis candidates. They use complex

model, such as SVM, Random Forest or CNN, to judge the candidates. The

segmentation stages in their system are generally rough and not significant.160

3. Approach

In this section, we describe the proposed SegMitos method for mitosis de-

tection and the concentric loss for training the SegMitos model.
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3.1. Mitosis segmentation based on fully convolutional network

3.1.1. Fully convolutional network165

Our SegMitos model is based on a fully convolutional network designed for

semantic segmentation on natural images. Fully convolutional network (Long

et al., 2015) adapts all fully connected layers in conventional classification net-

work to convolutional layers. It can take an input of arbitrary size and produce

an output of the corresponding size by performing upsampling in-network. The170

output of FCN reserves the spatial structure of the original image. Thus FCN

is very suitable to perform dense prediction tasks such as semantic segmenta-

tion. FCN has an end-to-end (image-to-image) learning architecture. It adopts

a whole image training strategy, which is more efficient than the patch-wise

training.175

The stride in the final convolutional layer of FCN is 32 pixels. The relatively

large stride makes the prediction map very coarse and prone to losing details. To

address this problem, FCN exploits the prediction output from the lower layer

to fuse with the original prediction map. The lower layer has a smaller stride

and receptive field size compared with the high layer, so its prediction is finer180

and more related to the local structure. Combining different prediction layers

can exploit complementary information in them to yield a better segmentation

result. As shown in Fig. 3, fusing the prediction of the base FCN-32s with the

prediction from pool4 layer yields FCN-16s model, which has a 16-pixel stride.

Further combining the prediction of FCN-16s with the prediction from pool3185

layer yields the network named FCN-8s whose stride is 8 pixels.

3.1.2. SegMitos for mitosis segmentation

The SegMitos model derived from FCN is tailored for performing segmenta-

tion on breast histopathology images. Since this task is a two-category (mitotic

cell or background) detection problem, we set the channel number of prediction190

layers in the SegMitos model to two. As the prediction result is on pixel level,

we can obtain the fine shape of mitotic cell. Our detection result is finer than
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Figure 3: FCN framework with different strides. The 32s in FCN-32s denotes the stride pixels

in the segmentation map before upsampling. So as the FCN-16s and the FCN-8s.

those of the common detection methods, which only give out results in bounding

box format.

3.1.3. Transfer learning across domains195

The training of deep CNN usually requires a great deal of data to optimize

the enormous number of network parameters. However, in the medical image do-

main, the data is usually limited and the expert annotation is expensive. Thus,

training a deep learning model from scratch is usually not practical in medical

image analysis. Fine-tuning is a widely used method for transfer learning in200

neural network training. Previous work (Tajbakhsh et al., 2016) has validated

the superiority of pre-trained CNN with adequate fine-tuning, indicating the

efficacy of transfer learning from natural image domain to medical image do-

main. Herein, we fine-tune the FCN model which has been pre-trained on the

Pascal VOC image segmentation task (Everingham et al., 2010). We initialize205

our networks with parameters from the pre-trained FCN and fine-tune all layers

through back-propagation on mitosis data.
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(a) circle label (b) concentric label

Figure 4: Visualization of the proposed mitosis label. (a) shows the circle label that intends

to involve mitosis pixels. (b) shows the concentric label of which the ring region is the middle

ground to comprise the pixels that are hard to estimate. The pixels inside the yellow circle

are almost mitotic while the ring region between the two circles includes both mitotic and

non-mitotic pixels.

3.1.4. Data augmentation

The size of a full HPF image is usually very large that directly processing the

full image will occupy too much GPU memory. Hence we crop patches from the210

original images. The side length of the patch is about 500 pixels. To produce

more training samples, overlapping patches are sampled.

Due to the limited number of mitosis images, data augmentation is very

critical to effectively train a deep model and prevent over-fitting. We perform

some image transformations on histopathology images, including image rota-215

tion, translation, and mirroring. As the proportion of mitotic cells is usually

low in histopathology images, the distribution of mitotic/non-mitotic pixels is

heavily biased. To alleviate the data imbalance, we utilize various kinds of im-

age transformation to produce much more variants for the patches that contain

mitotic pixels than the negative patches.220

3.2. Concentric label and loss

In this paper, we use four datasets to validate the proposed approach. The

first dataset is the 2012 ICPR MITOSIS dataset (Roux et al., 2013), which

provides pixel-wise labels as shown in Fig. 1(c). This type of annotation can
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reflect the shape of a mitotic cell accurately, providing a strong supervision to225

train a semantic segmentation model. However, labeling every pixel of mitoses

is very time-consuming for pathologists, so the pixel-wise annotation is not the

most common label for mitosis data. Most datasets adopt the centroid label as

shown in Fig. 1(d). The other three datasets (i.e., the 2014 ICPR MITOSIS

dataset (MITOS-ATYPIA-14, 2014), the AMIDA13 dataset (Veta et al., 2015)230

and the TUPAC16 dataset (Veta et al., 2018)) used in our experiments adopt the

centroid label. This type of annotation only marks a central pixel of a mitotic

cell, which is much easier and faster for pathologists to annotate. However, the

centroid label does not provide an accurate shape of mitotic cells and hence

cannot be used to train dense prediction model directly. To tackle this problem,235

we design two solutions for the centroid label.

The first one is a circle centered at the original centroid pixel, as shown in

Fig. 4(a). We regard the circular region as a mitotic cell. Based on a statistic

analysis in 2012 MITOSIS training set, the average area of mitotic cells is about

590 pixels. Considering that the shape of a mitotic cell is irregular and unknown,240

we make the circle small so that the pixels within the circle incline to be positive.

Specifically, we try two different configurations in circle label: the circle label

with 12-pixels radius and the circle label with 15-pixels radius. More details

will be described in Section 4.3.

However, there may still exist some mitotic pixels outside the circle. Rough-245

ly regarding all pixels outside the circle as negative pixels would impede the

optimization of segmentation networks. Thus, we add a ring region surround-

ing the small circle as the “middle ground”. Pixels in this ring region have

no strong possibility to be positive or negative so we regard them as neutral

samples. Specifically, this new label is depicted as a format of two concentric250

circles as shown in Fig. 4(b). The small yellow circle encircles the mitotic pixels

as the circle label, while an extra black circle is added to generate a ring region.

Since the shape of a mitotic cell is irregular, the ring region usually contains

both mitotic pixels and non-mitotic pixels. It is hard to estimate correct labels

for these ambiguous pixels, so we ignore them during the training stage. It can255
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be noticed that the ring region in Fig. 4(b) indeed contains mitotic pixels and

background simultaneously, so it is reasonable to assign neutral labels to them.

Since mitotic cells have varieties of shapes and areas, assigning a fixed con-

centric circle label to all cells is not appropriate. Thus, we propose a random

radii configuration for concentric circle label. Here we define the radius of the260

small circle as r and the radius of the large circle as R. The r is randomly chosen

from a uniform distribution between 10 and 17 pixels, and the R is randomly

1.5 times to 2.5 times the length of the r. We use multiple random concentric

labels for each mitotic cell, which could better fit the true morphological shape

of a cell.265

We design a corresponding pixel-wise loss function named concentric loss for

the concentric label as following:

L = −
N∑

n=1

(
∑
x∈C1

logP (1|x;W ) +
∑
x∈B

logP (0|x;W )) + λ

N∑
n=1

‖W‖22 (1)

where x is the pixel, W is the weight of network. P (1|x;W ) is the probability of

x being mitotic pixel given the network weight W . N is the number of images,

C1 is the round mitotic region inside the small circle, B is the background270

region outside the big circle. The ring region between the C1 and B does not

contribute to the loss computation. The last part is a regularization term and

the λ controls the balance. Our concentric loss is based on the Softmax loss.

We optimize the parameters of SegMitos model on the histopathology images

by minimizing the concentric loss function.275

3.3. Inferring mitosis on segmentation map

After training the SegMitos model, we apply it to segment the breast histopathol-

ogy images and produce pixel-wise predictions. Based on the segmentation

probability map, we infer mitotic cells by using a heuristic method.

For the sake of GPU memory, we divide the test HPF images into small280

patches. The output of SegMitos is a segmentation map in which the score

of a pixel denotes its confidence of belonging to the mitosis class. We stitch

the segmentation maps of these patches to get the response map of the full
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HPF. The prediction map is noisy due to the existence of ambiguous cells and

noise. To smooth the map, we apply a Gaussian filter on the segmentation285

response map. The smoothing can eliminate some tiny noisy responses. Then

we apply an image binarization on the response map to generate segmented

blobs. Here we take an adaptive threshold in the binarization of images. The

threshold is determined by Otsu’s method (Otsu, 1975), which minimizes the

intra-class variance of each class. Our threshold is determined holistically from290

the segmentation map of a full HPF, rather than in a patch-wise way.

We regard the segmented blobs as candidates for mitosis. By designing a

filtering mechanism, we eliminate false detections and obtain the true mitotic

cells. Specifically, we define two features on the segmented blob. The first one

is the area of the blob, and the second one is the blob’s mean confidence score.295

Intuitively, the response of mitosis in segmentation map should be large and

bright while the response of normal cells should be small and dim. Based on

this assumption, we filter the blobs according to the areas and mean scores. For

a blob, if its mean score S̄ is higher than a threshold s1 and meanwhile its area

A is larger than a threshold a1, this blob will be kept as a detection, otherwise,300

it will be filtered out. This threshold mechanism can efficiently and effectively

remove some false responses caused by easily-confused pixels, like the nuclei of

some non-mitotic cells. Fig. 5 illustrates the visual effect of each step in our

method. In this example, merely using the area feature to filter the segmented

blobs would produce a false positive. Further taking advantage of the filter305

based on the confidence score can remove this false detection.

4. Experiments

In this section, we evaluate the performance of our approach on four widely

used mitosis detection datasets and achieve state-of-the-art results on all of

them. We also use our concentric label on a breast mass segmentation dataset to310

demonstrate that the proposed method can be extended to other segmentation

tasks.
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(b) segmentation map (c) filter by area(a) original image (d) filter by area and score

Figure 5: Visual effect of each step of our proposed method. (a) shows a sample region from

a H&E slide image. (b) shows the visual result of segmentation probability map. (c) shows

the detection results of merely using the area feature to filter blobs. The green circle denotes

true positive while the yellow circle denotes false positive. Some tiny responses are screened

by this step. (d) shows the final detection results of using area and mean score to filter.

4.1. Implementation

We use a TITAN X GPU with 12GB memory to run our experiments. We

train our SegMitos model using the Caffe framework (Jia et al., 2014). The315

initial model is FCN-32s which is finetuned from VGG-16 net (Simonyan &

Zisserman, 2014) on PASCAL segmentation dataset. This model is publicly

available on the model zoo site of Caffe 1.

Model parameter. We follow the default training configuration of FCN. A

small learning rate (1e-10) and a high momentum (0.99) are used. The weight320

decay is 0.0005 and the batch-size is 1. We first train the base version of model

that has 32-pixels stride, and then we train the two finer versions of SegMitos

model. The SegMitos-16s model is trained based on the SegMitos-32s model

with a learning rate 1e-13. Finally, SegMitos-8s model is trained based on

the SegMitos-16s with a learning rate 1e-14. The networks are optimized by325

stochastic gradient descent.

Measurement of performance. According to the criteria of the mitosis de-

tection contests, a detection would be counted as a true positive when its cen-

troid is within a defined distance from the centroid of a ground truth mitosis.

1https://github.com/BVLC/caffe/wiki/Model-Zoo
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In 2012 MITOSIS dataset, the threshold of distance is 5 µm (20 pixels). In330

the other three datasets, this threshold of distance is 7.5 µm (30 pixels). The

accuracy of detection results is evaluated using F-score, which is the harmonic

mean of recall and precision, as shown below.

Fscore = 2× recall × precision/(recall + precision) (2)

4.2. 2012 MITOSIS dataset335

The 2012 ICPR MITOSIS dataset (Roux et al., 2013) is extracted from a

set of five breast cancer biopsy slides. In each slide, the pathologists selected

10 HPFs at 40X magnification. Among the 50 HPFs, 35 HPFs are used for

training and the remained 15 HPFs for testing. The number of mitotic cells in

the training set and test set are 226 and 101, respectively. The spatial size of340

HPF is 2084×2084 pixels. The annotation of this dataset is strongly supervised

that all pixels of a mitotic cell are labeled.

In this dataset, we rotate the negative patch in 4 angles and mirror it. While

for a positive patch, we apply more data augmentations including image rotation

in 16 angles, image translation in 9 directions and image mirroring.345

4.2.1. Ablation experiments

We conduct some ablation experiments using the SegMitos-32s model to

analyze the effect of each component in our framework. Results are reported

in Table 1 and discussed in detail next. The experiments are run on the 2012

MITOSIS test set.350

Impact of smoothing the map. Removing the Gaussian smooth operation of

the response map results in a 0.4 percent loss in performance. This indicates that

the smoothing can remove some tiny noisy response and improve the precision.

Impact of holistic binarization. In our method, we piece together the seg-

mentation maps of the patches and then determine the binarization threshold355
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Table 1: Ablations for SegMitos-32s on 2012 MITOSIS test set.

smooth? X X X X X

holistic binarization? X X X X X

use area? X X X X

use score? X X X X

F-score(%) 78.78 77.61 66.15 75.24 78.39 79.19

(a) (b) (c) (d)

Figure 6: The comparison of patch-wise binarization and holistic binarization. (a) shows a

histopathology image sample from a patch. (b) shows the segmentation map of (a) produced

by SegMitos model. (c) shows the patch-wise binarization result. (d) shows the holistic

binarization result. There exist no mitosis in this image sample.

by using the Otsu’s method on the full HPF’s segmentation map. To validate

the superiority of holistic binarization, we conduct a controlled experiment to

perform binary segmentation on patches individually. The thresholds of each

patch are produced by applying Otsu’s method individually. This patch-wise bi-

nary segmentation causes a 1.5 percent loss in performance. It is partly because360

in some patches that have no high response, the threshold would be low, and

that would introduce more extra noisy blobs compared to the holistic threshold.

In Fig. 6, we show the comparison of these two binarization ways. Due to the

low response of the segmentation probability map of this patch, the patch-wise

Otsu’s binarization gets a too low threshold that two false segmented blobs365

are produced. In contrast, the holistic binarization can achieve an appropriate

threshold by considering the response of full image, so it produces a much better

binary result.
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(c)(a) (b)

Figure 7: (a) and (b) show two false positive examples if we discard the area information. (c)

shows one false positive if we do not use confidence score information. All these false detections

can be screened out when we use both two features. The first row shows the SegMitos model’s

segmentation maps and the second row shows the detection results on original images. The

yellow and green circles are false positives and true positives, respectively.

Impact of using area information. If we do not utilize the area information

when filtering the candidates, the F-score would drop almost four percent. So370

the area of segmented blobs is very critical to distinguish the mitotic cells from

normal cells. There exist some tiny blobs with relatively high mean response

scores in the segmentation map. They are probably the nuclei of non-mitotic

cells or mimic pixels. For instance, the mean scores of the two blobs in Fig. 7(a)

and (b) are not low. If we only use the score information, it will produce two375

false positives. Taking advantage of their area information can effectively screen

them out.

Impact of using score information. If we do not utilize the mean confidence

score, the F-score drops 0.8 percent. We infer that the mean score of the blob

is useful but not as important as the area information. In Fig. 7(c), the area380

of the cell’s response on segmentation map is not small. Merely using the area

information cannot filter it out.

We then analysis the change of performance with respect to the two features’
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Figure 8: The performance of using only one feature to filter the candidates in 2012 MITOSIS

test set. (a) shows the change of F-score with respect to the confidence threshold, when we

only use the mean confidence to filter the candidates. (b) shows the change of F-score with

respect to the area threshold, when we only use the area information to filter the candidates.

thresholds, respectively. In Fig. 8(a), we shows the performance when we only

use the confidence score in the filtering stage. The F-score is relatively robust385

with respect to the confidence threshold. Fig. 8(b) shows the change of F-score

with respect to the area threshold. It is noted that the F-score is not very

sensitive to the area threshold. A wide range of area threshold (200-500 pixels)

can achieve good performance. Moreover, if we directly regard all the segmented

blobs as the final detections, without any filtering, we can still achieve a 0.662390

F-score. This result indicates our segmentation model is very powerful.

We further evaluate the finer stride versions of SegMitos model. Table 2

contains the performance comparison of different stride versions of SegMitos

model. It can be noticed that the SegMitos-16s model achieves an inferior

performance compared with the 32s model, probably because the training of395

16s model sinks into a local convergence. While the finest model SegMitos-8s

actually achieves the best result among them.
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Table 2: Performance of different SegMitos models on 2012 MITOSIS test set.

Model Precision(%) Recall(%) F-value(%)

SegMitos-32s 81.25 77.23 79.19

SegMitos-16s 76.70 78.22 77.45

SegMitos-8s 84.61 76.24 80.21

SegMitos-random 81.31 73.27 77.08

We also train a SegMitos-32s model with the random concentric label. It

achieves a 0.7708 F-score, a comparable performance to the models trained with

pixel-level labels. Though we only utilize the centroid information of mitosis in400

the concentric label, we can still obtain a very accurate semantic segmenta-

tion network. The performance gaps between the models trained with strongly

supervised labels and the one trained with our concentric label are not large,

which demonstrates the validity of the proposed concentric loss. Here, we do

not use the concentric label to train a 16s or 8s model, because we think the405

estimated concentric label is not very precise that it is hard to further improve

the performance by training finer versions of model.

In Fig. 9 we show some detection results of our method on test histopathology

images. It can be noted that the false positives have very similar appearance

with mitotic cells so it is hard to filter them out. The undetected mitotic cells410

are sometimes not obvious enough or too small to be discovered.

Table 3 presents the results of SegMitos and other methods. The last four

methods (IDSIA (Cireşan et al., 2013), IPAL (Irshad et al., 2013), SUTECH

(Tashk et al., 2013) and NEC (Malon et al., 2013)) in Table 3 are participants

of 2012 MITOSIS challenge, while all other methods appeared after the contest.415

Our SegMitos yields rank three of all methods. The excellent result qualitatively

validates the effectiveness of deploying a semantic segmentation model to the

mitosis detection application.
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Figure 9: The detection samples of our SegMitos method on 2012 MITOSIS test set. The

green, yellow and blue circles are true positives, false positives and false negatives, respectively.
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Table 3: Performance of different methods on 2012 MITOSIS test set.

Method Precision(%) Recall(%) F-value(%)

SegMitos-8s 84.61 76.24 80.21

SegMitos-random 81.31 73.27 77.08

DeepMitosis (Li et al., 2018) 85.4 81.2 83.2

RRF (Paul et al., 2015) 83.5 81.1 82.3

CasNN (Chen et al., 2016a) 80.4 77.2 78.8

HC+CNN (Wang et al., 2014) 84.0 65.0 73.45

IDSIA (Cireşan et al., 2013) 88.6 70.0 78.2

IPAL (Irshad et al., 2013) 69.81 74.0 71.84

SUTECH (Tashk et al., 2013) 70.0 72.0 70.94

NEC (Malon et al., 2013) 75.0 59.0 65.92

4.3. 2014 MITOSIS dataset

We then evaluate SegMitos on the 2014 ICPR MITOSIS dataset (MITOS-420

ATYPIA-14, 2014). This dataset has eleven folders in training data, where

each folder contains the HPF images from one breast cancer biopsy slide. There

are 1200 HPFs in training data, which include 749 mitotic cells. The spatial

size of HPF in this dataset is 1539 × 1376 pixels. In contrast to the 2012

dataset, pathologists only annotate the centroid pixel for each mitotic cell in425

this dataset. There are totally 496 HPFs from five folders (slides) in the test

set. The annotation of the test set is held out by organizers and the number of

mitosis cells is unknown.

We select the first folder A03 from training data as the validation set, and

the next seven folders (A04, A05, A07, A10, A11, A12, A14) as the training set.430

The training set contains 816 HPFs and 534 mitosis cells, while the validation

set contains 96 HPFs and 135 mitotic cells. We crop patches sized 385 × 344

pixels from full HPF for the sake of memory.

Since the number of images in 2014 MITOSIS dataset is much larger than
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that of 2012 dataset, we take fewer image transformations on images of 2014435

dataset. Specifically, for a patch that contains mitotic pixels, we translate,

rotate, and flip it to generate 144 variants. While for a negative patch, we do

not deploy augmentation as the negative pixels are already adequate in this

dataset.

The weights of SegMitos model are initialized from the model trained on 2012440

MITOSIS dataset. In this dataset, we only use the 32-pixels stride architecture

due to the coarse label. The parameters (area threshold and mean confidence

threshold) of our filtering mechanism are optimized on the validation set.

Table 4 contains the detailed results of different SegMitos models on 2014

MITOSIS validation set. The SegMitos(2012) in the first row is the SegMitos-445

32s model trained on 2012 MITOSIS dataset, while all other models are fine-

tuned on 2014 MITOSIS training set. To compare our proposed circle label and

concentric label, we use these two kinds of annotations to train the segmentation

model, respectively. For the circle label, we try two different configurations of

radius. The SegMitos-r12 model is trained with a circle label whose radius is450

12 pixels. Similarly, the SegMitos-r15 model uses a circle label whose radius

is 15 pixels. For the concentric circle label, besides the random radii, we also

try the configuration of fixed radii in this dataset. The SegMitos-r12R24 model

utilizes a concentric label, whose small radius is 12 pixels and large radius is 24

pixels. The next model SegMitos-r15R30 is also trained with concentric label455

but with different radii of circles. The SegMitos-random model is trained with

the random concentric circle label. As described in Section 3.2, the radius r

of small circle in random concentric label is chosen from a uniform distribution

between 10 and 17 pixels, and the ratio of R to r is 1.5 to 2.5.

The large performance gaps between the SegMitos(2012) model and the other460

models fine-tuned on 2014 MITOSIS images indicate the significance of fine-

tuning. The models using concentric label outperform the models using circle

label, which demonstrates the superiority of the proposed concentric label and

loss. Fig. 10 shows some detection results produced by SegMitos-random model

on 2014 MITOSIS validation set.465
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Table 4: Results on 2014 MITOSIS validation set.

Method Precision(%) Recall(%) F-score(%)

SegMitos(2012) 42.56 61.48 50.30

SegMitos-r12 48.02 71.85 57.57

SegMitos-r15 40.14 82.96 54.10

SegMitos-r12R24 51.68 68.15 58.78

SegMitos-r15R30 49.53 78.51 60.74

SegMitos-random 54.12 68.15 60.32

Figure 10: The detection samples of our SegMitos-random model on 2014 MITOSIS validation

set. The green, yellow and blue circles are true positives, false positives and false negatives,

respectively.
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Table 5: Performance of different approaches on 2014 MITOSIS test set. “-” denotes the

results which are not released.

Method Precision(%) Recall(%) F-score(%)

STRASBOURG - - 2.4

YILDIZ - - 16.7

MINES-CURIE-INSERM - - 23.5

CUHK 44.8 30.0 35.6

DeepMitosis (Li et al., 2018) 43.1 44.3 43.7

CasNN(single) (Chen et al., 2016b) 41.1 47.8 44.2

CasNN(average) (Chen et al., 2016b) 46.0 50.7 48.2

SegMitos-r12 46.88 51.72 49.18

SegMitos-r12R24 62.25 46.31 53.11

SegMitos-r15R30 59.43 51.23 55.03

SegMitos-random 63.75 50.25 56.20

We run the fine-tuned SegMitos models on the 2014 MITOSIS test set and

submit the detection result to the organizers of the challenge. The evaluated

F-scores of our models and some other methods are shown in Table 5. CUHK,

MINES-CURIE-INSERM, YILDIZ and STRASBOURG are the top four ap-

proaches that participate the 2014 ICPR MITOS-ATYPIA contest (MITOS-470

ATYPIA-14, 2014). The “single” version of CasNN (Chen et al., 2016b) utilizes

a single classification network in its fine discrimination stage, while the “aver-

age” version fuses results of multiple classification networks. As we can see, our

SegMitos methods outperform previous state-of-the-art methods. The markedly

superior detection performance results from the powerful discriminative capac-475

ity of SegMitos model. The model trained with the concentric loss using the

random radius, termed as SegMitos-random, achieves the best performance a-

mong all SegMitos models. It indicates that with the aid of proposed random

concentric loss, we can train an accurate semantic segmentation network in this

weakly supervised application.480
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4.4. AMIDA 2013 dataset

We then evaluate the proposed method on the Assessment of Mitosis Detec-

tion Algorithms 2013 (AMIDA13) challenge dataset (Veta et al., 2015). This

dataset consists of 12 subjects for training and 11 subjects for testing. The

training set is composed of 311 HPFs and 550 annotated mitotic cells, while485

the test set is composed of 295 HPFs and 533 mitoses. The size of each HPF

is 2000× 2000 pixels, representing an area of 0.25 mm2. Multiple pathologists

annotate the HPFs, and the ground truth mitoses are the objects that have

been marked by at least two experts. The label in this dataset is the centroid

pixel of the mitotic cell.490

We crop patches sized 500 × 500 pixels and perform data augmentation on

them. For mitotic patches, we perform the same augmentation as that of the

2014 MITOSIS dataset. For non-mitotic patches, we rotate them with a 90-

degree step. We use multiple random concentric labels for each mitotic cell.

The weights of SegMitos-random model is initialized from the SegMitos-32s495

model that has been trained on 2012 MITOSIS dataset.

Table 6 contains the overall F-scores of our SegMitos method and some

other methods. The first five methods are the participants of the AMIDA13

challenge. The IDSIA (Veta et al., 2015) method is the top ranking method,

which is similar to the IDSIA (Cireşan et al., 2013) in 2012 MITOSIS challenge.500

CUHK and AggNet (Albarqouni et al., 2016) are the methods that submit

the results after the challenge. Our SegMitos-random method surpasses all

other methods remarkably, including the previous best method IDSIA (Veta

et al., 2015). It is noted that the IDSIA utilizes 20 million patches extracted

from training images to train three models. For improving performance, IDSIA505

generates eight variants for each testing image and runs the three networks on

them. While our SegMitos model is trained on 300k patches and only uses the

original test image without any variant.

27



Table 6: F-scores of different methods on AMIDA13 test set.

Method Precision(%) Recall(%) F-score(%)

IDSIA (Veta et al., 2015) 61 61.2 61.1

DTU (Veta et al., 2015) 42.7 55.5 48.3

SURREY (Veta et al., 2015) 35.7 33.2 34.4

ISIK (Veta et al., 2015) 30.6 35.1 32.7

PANASONIC (Veta et al., 2015) 33.6 31.0 32.2

CUHK 69 31 42.7

AggNet (Albarqouni et al., 2016) 44.1 42.4 43.3

SegMitos-random 66.85 67.73 67.28

4.5. TUPAC 2016 dataset

The last dataset evaluated on is the Tumor Proliferation Assessment Chal-510

lenge 2016 (TUPAC16) (Veta et al., 2018). The main goal of this challenge is

to assess algorithms that predict the breast tumor proliferation from the whole-

slide images. An auxiliary dataset with annotated mitotic figures is used to

assess mitosis detection algorithms. The training data of this mitosis dataset

consists of images from 73 breast cancer cases. The first 23 cases are the dataset515

that was previously released as the AMIDA13 mitosis detection challenge. The

last 50 cases come from two different pathology centers, and each case has one

image region. Like the other datasets, the image modification is 40X and the

spatial resolution is 0.25 µm/pixel. The annotation format is the centroid pixel

of mitotic cell. The testing set consists of images from 34 breast cancer cases.520

The ground truth of the testing data is held out by the contest organizers.

We split the training data into training set and validation set. Since the

testing dataset and the cases 24-73 of the training data are from the same two

pathology labs, we select validation images from the cases 24-73. Specifically,

we take out one case from every seven cases as the validation set, namely, the525

cases 30, 37, 44, 51, 58, 65 and 72.

The size of the image region is too large so we crop patches sized 500× 500
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Figure 11: The detection samples of our SegMitos-random model on TUPAC16 validation

set. The green, yellow and blue circles are true positives, false positives and false negatives,

respectively.

pixels from the original image. We take the same method of data augmentation

as that of the AMIDA13 dataset. Multiple random concentric labels are used

to fit each mitotic cell.530

In this dataset, our SegMitos model is fine-tuned from the PASCAL-trained

FCN-32s model. No other mitosis images are used in the model training. We

apply the trained SegMitos model to the validation set and achieve a 0.717

F-score. Fig. 11 shows two detection samples from the validation set.

We then add the validation set to the training set to train the SegMitos535

model. We utilize this model to segment the testing images of the TUPAC16

dataset and produce detection results using our screening system. We submit

the results to the organizers of challenge. Table 7 contains the performance

comparison of our method and other algorithms. The Lunit (Paeng et al., 2017)

and the IBM (Zerhouni et al., 2017) are the top two participating approaches in540

the challenge. Warwick (Akram et al., 2018) achieves the best F-score among all

methods after the challenge. Our method raises the F-score by 1.7% comparing

with the previous best method Lunit (Paeng et al., 2017). Furthermore, our

method only uses the TUPAC mitosis data while the IBM (Zerhouni et al.,
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Table 7: F-scores of different methods on TUPAC16 test set. “- denotes the results which are

not released.

Method Precision(%) Recall(%) F-score(%)

Lunit (Paeng et al., 2017) - - 65.2

IBM (Zerhouni et al., 2017) - - 64.8

Warwick (Akram et al., 2018) 61.3 67.1 64.0

SegMitos-random 64.0 70.0 66.9

2017) and the Warwick (Akram et al., 2018) use some additional mitosis data.545

4.6. CBIS-DDSM dataset

To demonstrate that our method can be used on other circular object seg-

mentation, we use the concentric loss to train a breast mass segmentation model

on a mammography dataset. We choose this segmentation task because many

of breast masses have circle-like shapes.550

We use the CBIS-DDSM dataset (Lee et al., 2017), which is an updated

and standardized version of the Digital Database for Screening Mammography

(DDSM)(Heath et al., 2000). The CBIS-DDSM dataset has four sub dataset-

s: Mass-Training, Mass-Test, Calc-Training and Calc-Test. Since our target

is mass segmentation, we only use the Mass-Training and Mass-test datasets.555

Hence, there are 1231 full mammograms in training set and 361 full mammo-

grams in test set, respectively. Here we only regard the “Malignant” tumors as

foreground object, and all “Benign” tumors are treated as background. Fig. 12

shows one full mammogram and its corresponding mask from the CBIS-DDSM

training set.560

Although the CBIS-DDSM dataset has provided pixel-level ROI annota-

tions for mass, they are not generated by manually. The annotations are pro-

duced by applying a modification to the local level set framework (Chan &

Vese, 1999). Though the annotations in CBIS-DDSM are much better than the

DDSM-provided annotations, there still exist imprecise annotations.565
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Figure 12: Mammogram and mask examples from CBIS-DDSM.

Since the original size of a full mammogram is too large to train, we first

resize the images to 1536× 1024 pixels and then crop the resized mammograms

to obtain 6 patches. Every patch has a spatial size of 512×512 pixels. Then we

perform some simple data augmentations including image flipping and rotation,

yielding 19k image patches in total.570

We produce concentric labels based on the provided pixel-level masks. As

the mammographic masses are in a wide variety of shapes and sizes, we cannot

use a uniform radius configuration for the concentric labels of masses. We take

advantage of the height and width of each mass to generate its concentric label.

The detail of producing the concentric label of a mass is shown in Fig. 13. Fig. 14575

visually compares the provided pixel-level masks with the proposed concentric

labels.

We use the mask labels and our concentric labels to train the FCN model,

respectively. The training iterations of the two models are both 250k. Then

we run the two models on the test set of CBIS-DDSM. The dice coefficients of580

the two segmentation models’ results are shown in Table 8. We also show some
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Figure 13: Illustration of generating concentric labels.

(a) mammogram (b) mask label (c) concentric label

Figure 14: Comparison of mask label and concentric label.
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Table 8: Segmentation performances of FCN on CBIS-DDSM test set.

Training Labels Dice coefficient(%)

Mask 51.41

Concentric label 50.91

segmentation results in Fig. 15.

From the Table 8, we can observe that the performance of the model trained

with our concentric label is on par with that of the model trained with the

original mask. This result demonstrates the effectiveness of our concentric label585

for this tumor segmentation task. With our concentric loss, the experts will

only use a bounding box or a circle to annotate a mass, instead of manually

marking every pixel along the contour of the mass.

4.7. Discussion

4.7.1. Comparison among datasets590

Compared to the previous methods, the performance improvements of our

methods on the three weakly supervised benchmarks (2014 MITOSIS, AMI-

DA13 and TUPAC16) are more obvious than that of the strongly supervised

benchmark (2012 MITOSIS). That is partly because the performance on the

2012 MITOSIS dataset is already high enough due to the precise annotation.595

The evident improvements on the three centroid-label datasets demonstrate

that our concentric loss can solve the problem of training an effective mitosis

detection model with weakly supervised data. Moreover, since the image num-

ber of 2012 MITOSIS dataset is much smaller than those of the other three

datasets, using the performances on the three large datasets is more convincing600

to compare different algorithms.

4.7.2. Comparison with humans

According to a comparison of automatic algorithms and humans for mitosis

detection (Giusti et al., 2014), the IDSIA algorithm (Cireşan et al., 2013) has
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(a) (b) (c)

Figure 15: Segmentation results on CBIS-DDSM test set. (a) shows the mask ground truth.

(b) shows the segmentation result of FCN model trained with mask labels, while (c) shows

the segmentation result of FCN model trained with concentric labels.
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outperformed the best test subject by a small margin in a designed classification605

task on 2012 MITOSIS images. In this comparison, test subjects are not previ-

ously exposed to the task and they use the same training data as the automatic

algorithms. As our method has a better performance than IDSIA, this suggests

that our method can also surpass the performance of humans.

4.7.3. Time analysis610

In our method, segmentation of histology images occupies most of the time.

For a HPF sized 2084× 2084 pixels, it takes 2.9 s to produce the segmentation

map. Then it takes 0.13 s to process the segmentation map and yield the final

detections. Thus the total time to process a HPF on 2012 dataset is about 3

s. Compared to IDSIA (Cireşan et al., 2013) which requires 31 s to apply a615

network to an input image and 8 minutes to fuse results of multiple detection

models for a better performance, the speed of our approach is much faster.

For the HPF in 2014 dataset, which is smaller in size (1539 × 1376), it

takes 1.7s to process an image by our approach. In addition, we can directly

deploy the SegMitos model on the entire HPF image thanks to its relatively620

small size. That can avoid the steps of cutting the full image and tiling the

segmentation patches. Besides, deploying the SegMitos model on a full image

rather than multiple patches can improve the speed. In short, processing the

full HPF image directly can improve the detection speed to 0.92 s per HPF on

2014 dataset.625

5. Conclusion

A deep learning based automatic and accurate mitosis detection method is

proposed in this paper. We utilize a semantic segmentation model to segment

breast histopathology images. Based on the probability map, we develop a

filter mechanism to seek out mitotic cells from candidates. Moreover, for the630

weakly labeled dataset, we propose a concentric loss that can well leverage

the centroid annotation to train semantic segmentation networks and obtain

excellent performance. This novel loss function can extend the applicable scope
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of segmentation model, especially for weakly annotated datasets. The state-

of-the-art results of our SegMitos method on four mitosis datasets indicate the635

efficacious of deploying a segmentation model to mitosis detection task. In

the future, we can apply this concentric loss to some other weakly supervised

segmentation applications. Another promising future direction is to seek more

powerful segmentation model on the mitosis detection task and promote the

performance.640
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