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Abstract

Mitotic count is a critical predictor of tumor aggressiveness in the diagnosis

of breast cancer. Nowadays mitosis counting is mainly performed manually by

pathologists, which is extremely arduous and time-consuming. Hence it is very

necessary to develop automatic mitosis detection methods. In this paper, we

propose an accurate method for detecting and counting the mitotic cells from

histopathological slides using a novel multi-stage deep learning framework. Our

method consists of a deep segmentation network for generating mitosis region

when only a weak label is given (i.e., only the centroid location of mitosis is

labeled), a carefully designed deep detection network using contextual region

information to localize mitosis, and a deep verification network for improv-

ing detection accuracy by removing false positives. We validate the proposed

deep learning method in the widely used Mitosis Detection in Breast Cancer

Histological Images (MITOS dataset). Experimental results show that we can

achieve the highest F-measure on the MITOSIS dataset from ICPR 2012 grand

challenge merely by the deep detection network. For the ICPR 2014 MITO-

SIS dataset which only provides the centroid location of mitosis, we employ

the segmentation network to perform semantic segmentation and estimate the

bounding box annotation of mitosis for training the deep detection model. And
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the verification model is applied to eliminate some false positives produced by

the detection model. Fusing scores of the detection and verification models,

we achieve the state-of-the-art results. Moreover, our method is very fast with

GPU computing, which makes it feasible for clinical practice.

Keywords: Mitosis detection, Faster R-CNN, Fully convolutional network,

Breast cancer grading

1. Introduction

According to the Nottingham Grading System (Elston & Ellis, 1991), there

are three morphological features on Hematoxylin and Eosin (H&E) stained slides

that are important for breast cancer grading. They are mitotic count, tubule

formation, and nuclear pleomorphism. Among the three indicators, mitotic5

count is the most critical one. Pathologists usually search for mitosis and count

their number in high-power fields (HPFs) manually. It is time-consuming and

difficult due to the large number of HPFs in a single whole slide and the high

variation in the appearance of mitotic cells. Besides, the judgment of mitotic cell

is very subjective, and it is hard to reach a consensus on mitotic count among10

pathologists. Thus developing methods for detecting mitosis automatically is

very essential, which will not only save a lot of time, manpower and material

resources but also improve the reliability of pathological diagnosis.

Mitosis detection from the H&E stained histopathological images is hard

due to some challenges. First, the appearance of mitosis varies in a wide range.15

Mitosis has four phases which are called prophase, metaphase, anaphase and

telophase. The shapes and structures of cells in different phases are very diverse

as shown in Fig. 1 (a)-(c). In the telophase stage, the nucleus of a cell has

split into two parts, but they should still be counted as one cell because they

are not yet separated completely from each other. Second, mitotic cells are20

considerably less than non-mitotic cells. The low probability of emergence makes

the detection more difficult. Third, there are some other cells (like apoptotic

cells, dense nuclei) that have a similar appearance with mitosis, making it hard
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(d) non-mitotic cell(a) prophase (b) metaphase (c) telophase

Figure 1: Examples of mitotic cells and non-mitotic cell. (a) and (b) show the prophase

and metaphase of mitosis, respectively. (c) shows the appearance of a mitosis in telophase

stage, which should be still counted as one cell though it has two distinct nuclei. (d) shows a

non-mitotic cell having a similar appearance with mitotic cells.

to filter them out.

Recently, many automatic mitosis detection methods have been proposed.25

This phenomenon owes to some mitosis detection contests including the 2012

ICPR mitosis detection contest (Roux et al., 2013), the AMIDA13 contest at

MICCAI 2013 (Veta et al., 2015), and the 2014 ICPR MITOS-ATYPIA chal-

lenge (MITOS-ATYPIA-14, 2014). Most of the appeared methods use hand-

crafted features to model the appearance of mitosis for detection. Some meth-30

ods (Sommer et al., 2012; Irshad et al., 2013; Khan et al., 2012; Veta et al.,

2013; Tek et al., 2013) design different sorts of statistical, morphological and

textural features to capture characteristics of mitosis explicitly. However, due

to the diverse and complex shapes of mitosis and the existence of confounding

cells, it is hard to manually design meaningful and discriminative features to35

distinguish mitosis from non-mitotic cells effectively.

Since the remarkable work of Alex et al. (Krizhevsky et al., 2012) in ILSVR-

C 2012 (Russakovsky et al., 2015a), convolutional neural networks (CNN) have

revolutionized the world of computer vision. The methods based on CNN have

set up new records in many vision tasks, such as image classification (He et al.,40

2016), object detection (Ren et al., 2015) and semantic segmentation (Long

et al., 2015). In biomedical analysis field, CNN based methods also yield ex-
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cellent performance in several tasks, for instance, the segmentation of neuronal

membranes in microscopy images (Ciresan et al., 2012) and the analysis of de-

veloping embryos from videos (Ning et al., 2005). Hence some CNN based ap-45

proaches (Malon et al., 2013; Cireşan et al., 2013; Wang et al., 2014; Chen et al.,

2016a,b) have been proposed to detect mitosis. They utilize features learned

from data automatically, and the convolutional features are more efficacious

than the handcrafted features.

Current deep networks based mitosis detection methods can be divided into50

two folds: 1) Considering mitosis detection as a classification problem (Cireşan

et al., 2013), it classifies image patches using a plain CNN. This strategy could

be regarded as a sliding-window-based mitosis detection method, which is very

slow. 2) Considering mitosis detection problem as a semantic segmentation

problem (Chen et al., 2016b), it infers pixel-level label of mitosis using fully55

convolutional networks (FCN), which ignores region information and is hard to

deal with the weak labels, e.g., the 2014 MITOSIS dataset only labels the center

of mitosis. Thus, we argue that considering the mitosis detection problem as

an object detection problem makes more sense. We propose a method named

DeepMitosis which uses deep detection network to solve the mitosis detection60

problem. Meanwhile, to the best of our knowledge, this is the first paper that

utilizes deep detection method for the mitosis detection problem.

The region-based ConvNets detection methods (Girshick et al., 2014; He

et al., 2014; Girshick, 2015; Ren et al., 2015) are very prevalent in object detec-

tion field. Among them, Faster R-CNN (Ren et al., 2015) uses a fully convolu-65

tional Region Proposal Network (RPN) to generate proposals and then applies

a region-based classification network to classify these proposals. It achieves

excellent accuracy on the PASCAL VOC detection benchmarks (Everingham

et al., 2007). We adapt the deep detection model Faster R-CNN to the mitosis

detection task. An overview of our proposed DeepMitosis system is illustrated70

in Fig. 2. It consists of three components: a deep segmentation model based

on FCN for producing estimated bounding box labels, a deep detection model

based on Faster R-CNN for localizing mitosis, and a deep verification model
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based on ResNet for classifying the detection patches further to improve the

accuracy. The training of deep detector requires the bounding box label, and75

we can train it on 2012 MITOSIS dataset directly since the dataset has already

given the label of each pixel. However, the 2014 MITOSIS dataset only labels

the centroid of mitosis, thus we need to estimate the bounding box annotations

before training the mitosis detector. Inspired by the success of FCN in semantic

segmentation in natural images, we take advantage of a FCN model trained on80

2012 MITOSIS dataset, to perform semantic segmentation on the weakly an-

notated 2014 MITOSIS dataset. Combining the segmentation results with the

original centroid labels, we can infer a bounding box label for every mitotic cell.

The predicted box labels are then utilized to train the deep detection model.

As shown in Fig. 2 (b), the detection process has two stages. Firstly we run85

the deep detection model on a histology image to produce detection results, and

then these detected image patches are fed into the deep verification model for

further refinement. The verification model is a ResNet (He et al., 2016), which

has 50 layers with short-cut connections and is a powerful image classification

network. The final prediction is a weighted sum of the predictions from the90

detection model and the verification model, which is better than either of the

both.

In summary, we mainly have three contributions in this paper: (1) We de-

sign an architecture to estimate mitosis count automatically. The core of the

proposed architecture is a tailored Faster R-CNN; Faster R-CNN is originally95

proposed for object detection in natural images. We refine the general object de-

tection framework to medical images and achieve state-of-the-art performance

on two mitosis benchmark datasets. To our best knowledge, this is the first

work to apply Faster R-CNN on mitosis detection. (2) We train a deep segmen-

tation network to estimate the region of mitosis. With the estimated mitotic100

region, we infer the bounding box labels and use them to train a deep detection

model. Experimental results demonstrate that the inferred bounding box labels

improve the performance compared to a simple square bounding box. (3) We

adopt a classification model to further verify the detection results of the deep
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Figure 2: Mitosis detection system overview. (a) In training phase, it shows the process of

generating estimated bounding box label for MITOSIS 2014 dataset. The yellow dot denotes

the original centroid annotation, while the green box denotes the estimated bounding box

using the segmentation result of the deep segmentation model. (b) In testing phase, it shows

mitosis detection pipeline which includes a deep detection model followed by a deep verification

model. The yellow box and green box are false positive and true positive, respectively.

detector. It provides a filtering system to reject the false positives misclassified105

by deep detection model, because its training data includes the hard negatives

of detection model. Thus our system gets the bootstrapping mechanism to learn

from mistakes.

The rest of this paper is organized as follows. A brief review of related work

on mitosis detection, deep detection, segmentation and verification methods is110

given in Section 2. The following Section 3 introduces the details of our proposed

approach. Section 4 details the experiments and shows state-of-the-art results

on two publicly available datasets, whereas conclusions are made in Section 5.

2. Related work

There have been many approaches proposed for automatic mitosis detection115

from images. In terms of the image features, we can divide them into two types,

handcrafted features based and CNN features based. Handcrafted features are

widely applied in this problem to describe the appearance of mitotic cells (Veta

et al., 2013; Khan et al., 2012; Wang et al., 2014; Sommer et al., 2012; Huang
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& Lee, 2012; Malon et al., 2013; Irshad et al., 2013; Tek et al., 2013; Paul &120

Mukherjee, 2015). The handcrafted features usually contain shape, statistical

and textural features to describe the mitotic cells. They are designed based on

the domain knowledge of pathologists to recognize mitosis. The features are

classified by support vector machines (SVM), random forest etc. The drawback

of the handcrafted features is that they can not well describe the appearance125

of mitosis. Since there are a variety of morphologies and textures in mitotic

cells, it is hard to manually design features to describe all mitosis very well.

Another type of features used in this task is based on CNNs (Malon et al., 2013;

Wang et al., 2014; Cireşan et al., 2013; Chen et al., 2016a). Compared with the

handcrafted features, convolutional features are more powerful since they learn130

the representation of mitosis automatically. The disadvantage of deep convo-

lutional features is its complexity in computation and a relatively long time to

train. (Malon et al., 2013) combines manually designed features with CNN fea-

tures and yields a 0.659 F-score on 2012 MITOSIS dataset. Most of the mitosis

detection methods firstly generate candidates and then classify them by vari-135

ous classifiers to single out mitotic cells. Unlike this general scheme, (Cireşan

et al., 2013) does not resort to the candidate segmentation process and directly

applies the deep network classifier to images. It yields the highest F-score at

2012 MITOSIS contest and AMIDA13 challenge among all methods of partic-

ipants. However, this pixel-wise classifier uses a sliding window way which is140

very computationally intensive in the test stage. Hence it is not very practical

in clinic. Wang et al. (Wang et al., 2014) design a cascade system that requires

fewer computing resources compared with (Cireşan et al., 2013). It leverages

both handcrafted features and CNN features, and each type of features is used

to train an individual classifier. In the test stage, images are classified by the145

two classifiers individually, and once the detection results of the two classifiers

are not consistent, the image would be further classified by a second-stage clas-

sifier which is trained with both two features. However, it is not a pure deep

learning based method. Selecting candidates is still based on a traditional cel-

l segmentation method using Laplacian of Gaussian (LoG) responses on color150
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ratios, which is prone to losing mitosis since the handcrafted features could not

accurately reflect the characteristics of mitosis. They only use the convolutional

neural network to classify the candidate patch, and the network architecture is

relatively small which results in the capacity of discrimination is not strong. So

they use handcrafted features and traditional classifier to confirm the accura-155

cy. CasNN (Chen et al., 2016a) leverages two convolutional neural networks to

make up a deep cascaded detection system: a coarse retrieval model locates can-

didates through fully convolutional networks, and then a classification network

is applied to find out mitosis from the candidates. Though the CasNN (Chen

et al., 2016a) produces candidates by a retrieval neural network, its two neural160

networks (retrieval model and discrimination model) are trained independently.

It is not trained in an end-to-end way, which impedes the integration of the two

networks. Different from previous methods, we use the deep detection model to

produce proposals and classify them in a single network, and the region propos-

al network and the subsequent classification network in deep detection model165

share full-image convolutional features. It means that the sections of candidates

generation and classification can be trained jointly in an end-to-end fashion.

Deep learning based methods have significantly improved the accuracy of

object detection and image classification (Krizhevsky et al., 2012). The Region

based convolutional neural network (R-CNN) (Girshick et al., 2014) uses region170

proposals produced by the selective search algorithm (Uijlings et al., 2013), and

recognize the proposals by SVM with deep convolutional features. It is very

slow because the R-CNN performs a ConvNet forward pass for each proposal.

For accelerating the detection speed, Fast R-CNN (Girshick, 2015) computes

features for an entire image and extracts the features of a proposal by a region of175

interest (RoI) pooling layer. But the proposal is still generated by a translational

and external method, and it accounts for a high portion of processing time. To

address this problem, Faster R-CNN applies a RPN to generate proposals and

the RPN shares the convolutional features with the Fast R-CNN classification

network. This detector achieves a frame rate of 5 fps. The R-CNN based180

methods have been applied in many detection tasks, such as pedestrian detection
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(Zhang et al., 2016; Li et al., 2015) and cell-phone usage detection (Hoang

Ngan Le et al., 2016).

The fully convolutional network is proposed for semantic segmentation task,

and it achieves state-of-the-art performance in several segmentation datasets,185

including PASCAL VOC and NYUDv2 (Silberman et al., 2012). Inspired by

FCN, holistically-nested edge detection (HED)(Xie & Tu, 2015) is proposed. It

leverages the deeply-supervised nets (DSN) (Lee et al., 2015) to perform multi-

scale and multi-level feature learning. The multi-scale results provide a more

accurate edge pixel localization and refine the edge segmentation prediction.190

Though there have been some CNN-based methods for mitosis detection,

most of them use the convolutional neural networks as the classifier or feature

extractor, and no detection network, like R-CNN, has been applied to this task

directly. Our method applies a deep detection model to this task and address-

es the problems we met. Moreover, we use a multi-stage system to raise the195

accuracy, where the prediction results of detection component and verification

component are combined through a fusion mechanism.

3. Methods

In this section, we describe the DeepMitosis method in detail. Our Deep-

Mitosis method mainly consists of three components: A deep detection mod-200

el (DeepDet) produces primary detection results. A deep verification model

(DeepVer) verifies these detections and eliminates false positives to improve the

accuracy. In addition, for the weak annotations that do not give out pixel-level

labels, we utilize a deep segmentation model (DeepSeg) to segment the images

and obtain estimated bounding boxes annotations.205

3.1. Using Deep Detection network to detect mitosis

We illustrate the architecture of DeepDet in Fig. 3. Our detection model is

based on Faster R-CNN. It utilizes a RPN to generate object location proposals

which are category-agnostic. Over the last convolutional feature map, reference
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boxes with different scales and aspect ratios are generated at each position.210

These reference boxes are called anchors. Two sibling fully-connected layers

are then responsible for classifying the anchor and regressing the bounding box,

respectively. Since these two fully-connected layers are not related to the spatial

position, they are implemented as convolutional layers. For each anchor box,

the anchor classifier predicts its probability of being a foreground object and215

the bounding box regressor outputs the estimated coordinates encoding the

predicted bounding box of object. With the encoded coordinates, the anchor

box can be transformed to a region proposal. Then, for each object proposal,

a RoI pooling layer is applied to extract a fixed-length feature vector from the

feature map. The RoI pooling leverages max pooling to transform the features220

inside the proposal to a fixed spatial extent feature map. Through the RoI

pooling, the feature of any size proposal can be converted to a fixed size, which is

required by the fully-connected layers of region classification network. Then the

feature vector is fed into the region-based classification network which is used to

recognize the proposals. The convolutional features of the classification network225

are shared with the RPN to reduce the computational cost. The classification

network also has two sibling output layers, one for the probability estimates of

each class, and another for predicting the encoded bounding boxes of each class.

The anchors of RPN have three scales and three aspect ratios. In our issue,

the shape of mitosis is irregular, so it is necessary to apply multiple aspect230

ratios. We follow the default three aspect ratios of anchors in RPN, which are

1:1, 1:2 and 2:1.

Since the resolution of HPF images is very large, it is not convenient to

utilize the original images to train the detector directly. We crop image patches

from original images. Extracting sample is also a type of data augmentation235

since the cropped image patches are highly overlapped.

The mitosis in the original image is relatively small with an average side of

30 pixels, while the total stride in the last convolutional feature map is 16 pixels,

so the region of a mitosis would be too coarse in the feature map, which is not

suitable for fine-grained recognition. To address this problem, we re-scale the240
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Figure 3: The architecture of DeepDet model. It consists of a RPN and a region-based

classification model. It takes a histology image and generates convolutional feature maps.

Upon the last feature map, anchors with different scales and aspect ratios are produced at

each location. These anchors are handled by anchor classifiers and bounding box regressor to

produce proposals. For each proposal, the RoI pooling layer extracts a fixed-length feature

vector from the feature map. Then the region-based classifier predicts the score and output

the refined bounding box position for each region proposal. The yellow box and green box in

the last detection image are false positive and true positive, respectively.
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image patch by two times. Thus the 16 pixels stride in the last convolutional

feature map is equivalent to 8 pixels of the original image. The DeepDet uses

3 scales with box areas of 1282, 2562, and 5122 pixels for detecting objects of

different scales. An appropriate setting of scales is important for training the

detection model. A statistic about mitotic cell area shows that there are few245

large mitotic cells, so we remove the largest scale 512 and add a small scale 64.

The modified anchors can effectively cover mostly mitotic cells.

DeepDet is trained in an end-to-end way and the image mini-batch size is

one. 256 anchors from an image are selected during a training batch. If an

anchor is overlapped with any ground-truth bounding box and the Intersection-250

over-Union (IoU) is higher than 0.7, it would be assigned as a positive sample.

On the contrary, if the IoU of an anchor is lower than 0.3 for all ground truth

bounding boxes, the anchor would be assigned as a false sample. The anchors

with IoU between 0.3 and 0.7 are ignored during training because they are not

typical samples and prone to introduce confusion.255

For each anchor, the RPN predicts its category (object or not object) and

bounding box regression. Through the regression, anchors are converted to

proposals for the down-stream region-based classification network. A proposal is

labeled as foreground if its IoU with a ground-truth bounding box is not less than

0.5. And if its maximum IoU with any ground truth is in the interval [0.1, 0.5),260

it would be labeled as background. In this training way, the chosen background

RoIs are all overlapped with ground truth, while most background region would

not contribute to the training. Considering that the number of mitosis in each

image is low, and there are many difficult background regions should be taken

into account in training. We change the IoU interval of background to [0, 0.5),265

such that the negative proposals can be obtained from the background region

by choosing the image patches that are not overlapped with mitosis.

3.2. Refining detection results by Deep Verification network

There may be many false positives in the detection results of DeepDet, so we

take advantage of a verification network to classify the detections and eliminate270
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the false positives among them.

The DeepDet performs detection on the histology images and yields results.

For the detector trained with estimated bounding boxes, its detections are not

very reliable. Thus we develop a verification model following the DeepDet to

refine the detection results. Another motivation to apply the verification mod-275

el is that it can provide hard examples mining for the overall system. Faster

R-CNN does not use bootstrapping and hence lacks the ability of mining hard

examples (Shrivastava et al., 2016). During the training of DeepDet, the RPN

proposals that are wrongly classified by the region-based classification model

in one training iteration could not be collected for training the model in more280

iterations. Actually these hard samples are very valuable for the model opti-

mization and can greatly enhance the discriminative capacity of model. Our

verification model is trained on the detection results of DeepDet model includ-

ing false positives, so it can obtain the capacity to identify hard mimics and

thus can be viewed as a way of hard example mining.285

We collect all the detections produced by DeepDet to train the DeepVer

model. For a detected patch, we keep its centroid unchanged and extend the

image patch to a square box with a fixed side length. Our DeepVer model is

illustrated in Fig. 4. It is based on the ResNet (He et al., 2016), which achieves

state-of-the-art performance in many vision tasks, such as ImageNet classifi-290

cation (Russakovsky et al., 2015b), ImageNet detection, and COCO detection

(Lin et al., 2014). ResNet learns residual functions with reference to the layer

inputs, instead of directly fitting a desired underlying mapping. The shortcut

connection denotes an identity mapping, which sends the input to add with the

output of stacked layers. The deep residual learning net can solve the degrada-295

tion problem during training a substantial deep network and enjoys performance

gains from increased depth.

The DeepVer model gives a probability score for each image patch. We fuse

the scores of the DeepDet and the DeepVer. The final score of an image patch is

13



train
1x1

+

x

relu x
identity3x3

relu

Image

F(x)

F(x)+x

7x7

ResNet 50

1x1
relu

fc2

softmax

Figure 4: The architecture of DeepVer model. It is based on ResNet. The detection results

of DeepDetare used for training the verification model. The image patches with green border

and red border are positive samples and negative samples, respectively. Here we illustrate a

building block of ResNet. The F(x) is the residual function that the stacked nonlinear layers

need to fit. The shortcut connection simply performs identity mapping, and its output is

added to the residual mapping F(x). A deep ResNet is constructed by stacking the blocks.
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a weighted sum of the detector score SDeepDet and the classifier score SDeepV er.300

S = ω × SDeepDet + (1 − ω) × SDeepV er (1)

This fusion method utilizes not only the classification score of DeepVer but

also the prediction score of DeepDet when making decisions. It can take full

advantage of predictions of the two models and explore the complementary of

the two predictions to boost the accuracy.

3.3. Estimating bounding box label through Deep Segmentation network305

In an object detection problem, the annotations are usually in bounding box

format. The bounding boxes are necessary to train the DeepDet model. As

shown in Fig. 5, there are two types of annotations in the mitosis datasets. One

is the pixel-level ground truth that annotates every pixel of a mitotic cell. This

type of label provides sufficient information that we can easily obtain an accurate310

bounding box for mitosis. Another kind of annotation merely labels the centroid

of a mitosis and we can not get an accurate box to bound the mitosis. A simple

strategy is to generate a fixed rectangle box for each mitosis. However, there

is a wide range of aspect ratios and scales in mitotic cells. Thus the uniform

square bounding box can not match the mitotic cells well. To solve this problem,315

we utilize a FCN segmentation model to process the images and then estimate

the mitotic region based on the segmented images. This estimation provides

pixel-level annotations hence we can obtain a refined bounding box label.

The FCN model is derived from VGG 16-layer net by replacing all fully con-

nected layers with convolutional layers, and it produces pixel-wise prediction320

through a deconvolutional layer. We train a FCN segmentation model on the

mitosis data that has pixel-level annotation, namely the 2012 MITOSIS dataset.

For adapting the original FCN model (Long et al., 2015) to mitosis data, we

modify the channel number of prediction layers to two, which represents mitosis

and non-mitosis. Since the annotation has given the label of each pixel, we can325

easily transform them to label images, where 1 denotes the mitotic pixel and

0 represents a pixel of other cells. With the label images, we train a semantic
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(a) 2012 mitosis annotation (b) 2014 mitosis annotation

Figure 5: Annotations of mitosis datasets. The pixel highlighted with yellow is the annota-

tions. (a) shows the pixel-level annotation of 2012 MITOSIS dataset which annotates every

pixel of mitosis region. (b) shows the label of 2014 MITOSIS dataset that roughly gives the

centroid of a mitotic cell. For better view, the single centroid pixel is enlarged to a circle.

segmentation model. After training such a model, we apply it to the 2014 MI-

TOSIS dataset. The DeepSeg model predicts the regions of mitosis and gives

refined bounding boxes of mitotic cells. The processing of producing bounding330

box of mitosis is illustrated in Fig. 6. DeepSeg model performs semantic seg-

mentation on the histology image and predicts the mitotic regions. For each

original centroid annotation, we locate a segmented mitotic blob covering the

centroid pixel, and then use a rectangular box to bound the blob. This box is

the refined bounding box label.335

3.4. Mitosis detection on 2012 MITOSIS dataset and 2014 MITOSIS dataset

The annotations of the 2012 MITOSIS dataset and 2014 MITOSIS dataset

are different, which results in the pipelines of proposed detection system on

these two datasets are also different, as shown in Fig. 7. Specifically, the 2014

dataset needs two more steps: 1) it needs to be segmented by DeepSeg model for340

yielding bounding box annotations; 2) the detection results of DeepDet model

need to be verified by the DeepVer model for further refinement. Though we

perform semantic segmentation on 2014 MITOSIS dataset by DeepSeg model,

the segmentation results maybe not very accurate, and that would result in

inferior estimated bounding box annotations. The impure annotations damage345

the detection network optimization and limit the accuracy of detection. For
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Figure 6: The processing of transforming centroid annotations to bounding box annotations

by DeepSeg model. DeepSeg can produce pixel-wise prediction through a deconvolutional

layer. For each mitosis in ground truth, we locate the corresponding segmented mitotic region

and generate a bounding box from it. The green box denotes the estimated bounding box.

refining the results, we add the verification model following the detection net-

work. While in 2012 dataset, the given pixel-level label has provided accurate

and reliable bounding box, so we can obtain a powerful enough detector and do

not need to deploy verification model.350

4. Experiments and Results

In this section, we evaluate the performance of our proposed method for

mitosis detection on 2012 MITOSIS contest dataset and 2014 MITOSIS dataset.

On the 2012 MITOSIS dataset, we only exploit the DeepDet model since the

pixel-level annotations are given. For the 2014 dataset, we use the overall system355

including segmentation model, detection model and verification model. The

whole DeepMitosis system is implemented based on the Caffe deep learning

framework (Jia et al., 2014) using Python and C++. The source code will be

relsearsed on publication. Experiments are carried out on a Linux server with

one NVIDIA GeForce GTX TITAN X GPU.360

4.1. Datasets

2012 ICPR MITOSIS Dataset . The 2012 ICPR MITOSIS dataset (Roux

et al., 2013) has 50 histopathology images corresponding to 50 HPFs at 40X
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Figure 7: The pipelines of two mitosis dataset. (a) shows the detection pipeline of 2012

MITOSIS dataset, which merely utilizes the DeepDet model. (b) shows the detection pipeline

of 2014 MITOSIS dataset. (c) shows that the DeepSeg model is trained on 2012 MITOSIS

dataset and applied on 2014 dataset.

magnification, which are selected from breast cancer biopsy slides by patholo-

gists. There are more than 300 mitotic cells labeled in the dataset and all pixels365

of each mitosis are annotated. We evaluate our method on the most widely used

images produced by the Aperio XT scanner. The resolution of the scanner is

0.2456 µm per pixel. The HPF image has an area of 512× 512 µm2, so the size

of each image is 2084 × 2084 pixels.

Following the rule of 2012 ICPR MITOSIS contest, 35 HPFs are used for370

training, and the remaining 15 HPFs are applied for testing. There are 226 and

101 mitosis in the training set and test set, respectively.

2014 ICPR MITOSIS Dataset . The 2014 ICPR MITOSIS dataset (MITOS-

ATYPIA-14, 2014) has significantly more images than the 2012 MITOSIS dataset.

It includes 1696 HPFs at 40X magnification. The size of each HPF is 1539×1376375

pixels in this dataset. The training data consists of 1200 HPFs with 749 mitotic

cells labeled, while in test set there are 496 HPFs but the number of mitotic

cells is unknown since the annotation is held out by organizers. The mitotic cells

in training data are labeled by two pathologists, and if there exists a conflict

between them, another pathologist will give annotation and the final result is380
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determined by the majority. As mentioned above, the annotation in this dataset

only labels the centroid rather than all pixels for each mitotic cell.

Performance measurements. The number of mitoses is critical in the breast

cancer grading system, so the measurement of performance in the mitosis de-

tection task is mainly based on the number of mitoses correctly detected, rather385

than the shape of detected mitosis. According to the contest criteria, the correct

detection is the one that lies within a distance from the centroid of a ground

truth mitosis. The distance is 5 µm (20 pixels) in 2012 MITOSIS contest and

8 µm (32 pixels) in 2014 MITOSIS contest.

Here we define some measures used for evaluating the accuracy of mitosis390

detection. D is the count of mitosis detected by our proposed approach. TP

is the number of detections that are ground truth mitosis among the D mitosis

detected, while FP is the number of detections that are not ground truth mitosis.

And the number of ground truth mitosis not detected is defined as FN . With

these measures, we can calculate the recall, precision, and F − score using the395

following formulations:

recall = TP/(TP + FN) (2)

precision = TP/(TP + FP ) (3)

F − score = 2 × recall × precision/(recall + precision) (4)

4.2. Deep Detection model on 2012 MITOSIS dataset

Thanks to the precise and detailed ground truth of 2012 MITOSIS dataset,

we can easily obtain the required bounding box annotations to train the DeepDet

model. The model can yield excellent performance and we do not resort to400

verification model on this dataset.
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Table 1: The performance of our detection models on 2012 MITOSIS test set. These models

are trained using image patches with different scales. The “Patch Size” is the original size of

cropped patch. All patches are uniformly re-scaled to 1024 × 1024 pixels to train DeepDet

models, and the corresponding enlarged ratio of the image patch is shown in “Scale” row.

Patch Size 1024 640 512 256

Scale 1 1.6 2 4

F-score 0.568 0.762 0.768 0.756

4.2.1. Hyper-parameters

Our DeepDet model is based on VGG CNN M 1024 model (Chatfield et al.,

2014), which is pre-trained on ImageNet classification dataset (Russakovsky

et al., 2015b). We first train the model with the initial learning rate of 0.001 for405

50k iterations, then continue training for 50k iterations with the learning rate

of 0.0001, finally training for 20k iterations with the learning rate of 0.00001.

We set momentum to 0.9, set weight decay to 0.0005, and batch size to 1.

4.2.2. Data augmentation of training data

Even the TITAN X GPU has 12GB memory, the full sized HPF image is too410

large to be taken as the input of the DeepDet model. Thus we need crop image

patches from the original HPF images. In addition, a mitotic cell is relatively

small under the original image scale, so we need to enlarge the images to fit

the detection model which is initially designed for general object detection. For

seeking the appropriate scale, we crop patches of different sizes from the original415

histology images and re-scale them to 1024×1024 pixels uniformly. Then we use

these different scales patches to train the DeepDet model individually. Table 1

shows the performance of our DeepDet models trained on image patches with

different scales.

It can be observed that the F-score is very low when using image patches420

of the original scale. And the performance improves drastically as the scale

increases to 1.6. Further increasing the scale does not bring a distinct effect
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Table 2: The performance of DeepDet models trained with different training sets. The per-

formance is evaluated on 2012 MITOSIS test set.

Training set F-score

AreaTh(800) 0.768

AreaTh(1600)+Rot 0.825

AreaTh(1000)+Rot 0.814

AreaTh(800)+Rot 0.832

on the F-score. For simplicity, we choose the scale 2 in our experiments as it

achieves the best result among different scales. Moreover, using the moderate

scale is relatively economical in memory. Specifically, we densely sample patches425

of 512× 512 pixels from the original images with a step size of 32 pixels. Then,

we re-scale the sampled image patches to 1024 × 1024 pixels. The mitotic cells

in the boundary of patches may be split into two or more small parts. If the

generated incomplete mitosis part is tiny, it should not be regarded as a valid

image patch. We remove the image patches that contain small cross-boundary430

mitotic cells with an area lower than 800 pixels. The moderate threshold keeps

effective positive samples as much as possible, and simultaneously filters out

tiny mitosis parts which are prone to introduce error terms in training.

Training deep CNNs needs a large number of samples, so we rotate and

mirror the original HPF images and then extract patches from the transformed435

images to produce more training samples. Here we rotate the original images in

a step of 45 degrees. The data augmentation can yield more mitotic samples,

which are critical for the training of the DeepDet network, especially when the

number of mitotic samples in the original training dataset is significantly small.

Table 2 shows the performance of DeepDet models trained on different440

training sets. The number in “Training set” row is the area threshold used

when filtering the boundary mitosis. For instance, the “AreaTh(800)” training

set removes the image patches containing a boundary mitotic region smaller

than 800 pixels. The “+Rot” means the training set includes rotated images;
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otherwise, its data augmentation only includes image mirror. We note that the445

image rotation improves the F-score remarkably. Fig 8 shows detection results

of “AreaTh(800)+Rot” detector on two HPFs of 2012 MITOSIS test set.

4.2.3. Parameters studies

We carry out some controlled experiments to examine how each parameter

affects the performance of DeepDet model.450

Anchor batch size . In the RPN training, every mini-batch contains positive

and negative anchors from a single image. The “Anchor batch size” denotes the

mini-batch size of anchors used in training. For the mitosis dataset, the number

of positive samples in a single HPF image is often low. If the batch size is too

large, the negative samples will dominate the data and bias the training. The455

default batch size is 256, and we evaluate some smaller batch size, e.g. 128 and

32. As reported in Table 3, the results of using small batch size are comparable

to the best results, which indicates that the batch size is not very critical for

RPN training and a relatively small value is also appropriate for this task.

Anchor scales. There are three anchor scales in the model, which are 128, 256460

and 512. Considering that the mitotic cells are usually small even though the

images are resized with scale 2, the largest anchor scale 512 is not appropriate

for detecting mitosis. As shown in Table 3, the F-score improves 2% when we

remove the scale 512 and add a smaller scale 64. It indicates that the anchor

scale 64 is beneficial to the detection. Using merely two scales 64 and 128 are465

afford to give a good result. It makes sense since most of mitotic cells are in the

range of the two scales.

Proposal number. The proposals generated by the RPN may overlap with

each other, and the non-maximum suppression (NMS) is applied to reduce the

number of proposals. In the detection stage, after the NMS, the top-N ranked470

proposals are selected based on the confidence generated by RPN. These propos-

als are then judged by the following classification sub-network. The parameter
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Table 3: The performance of DeepDet models when training with different parameter config-

urations. All the detectors are trained on the optimal training set “AreaTh(800)+Rot” and

the F-score is evaluated on 2012 MITOSIS test set.

Anchor Batch Size Anchor Scales Proposal Number F-score

32 64,128,256 300 0.812

128 64,128,256 300 0.826

256 128,256,512 300 0.810

256 64,128 300 0.808

256 64,128,256 50 0.827

256 64,128,256 100 0.831

256 64,128,256 300 0.832

top-N is the “Proposal Number” in Table 3. We evaluate different numbers of

proposals in experiments. Due to the low density of mitotic cells, the number

of mitosis in a HPF image is usually small. Experimental results indicate that475

the performance is very robust to the number of proposal. Even we only use

the top 50 proposals after NMS, it still achieves a 0.827 F-score, which is a

state-of-the-art result as well.

4.2.4. Applying RPN to mitosis detection

Note that there is only one category of the foreground object in our issue,480

so we can apply a RPN to detect mitosis directly. As described above, the

RPN has two sibling convolutional layers for classifying anchors and regressing

bounding box. For our issue, the region proposals generated by the RPN can

be viewed as the final detection results. The proposal scores can be taken as

the prediction scores, while the regression predictions of proposals are the final485

bounding boxes predictions.

We choose the DeepDet model with the highest 0.832 F-score, and by remov-

ing its classification sub-network we can get the RPN model. As the parameters

of fully connected layers in classification sub-network account for a majority of
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Figure 8: Mitosis detection results of DeepDet on two HPFs of the 2012 MITOSIS test

set. Yellow, blue and green boxes denote false positives, false negatives and true positives,

respectively.

proportion in the DeepDet, the size of the extracted RPN module is very s-490

mall (about 30M). The F-score of this RPN model on the 2012 MITOSIS test

set is 0.796. The competitive performance indicates that the extracted RPN

model can be a good detector for this single-category detection problem. How-

ever, when we train a new RPN with our mitosis dataset independently, the

F-score drops to 0.768. The nearly 3% gap indicates that the training mode495

of sharing convolutional features between the RPN and the classification sub-

network in DeepDet actually produces better convolutional features and higher

performance.

4.2.5. Comparison with other methods

We then compare our method with some other approaches in performance.500

The details are shown in Table 4 and Fig. 9. Our approach achieves the

highest F-score on 2012 MITOSIS test set. The IDSIA (Cireşan et al., 2013),

IPAL (Irshad et al., 2013), SUTECH (Tashk et al., 2013), NEC (Malon et al.,

2013) are the four best results attending the Mitosis detection contest in ICPR
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Table 4: Performance of DeepDet with other competing approaches for 2012 MITOSIS test

set.

Method Precision Recall F-score

DeepDet 0.854 0.812 0.832

RRF (Paul et al., 2015) 0.835 0.811 0.823

CasNN (Chen et al., 2016a) 0.804 0.772 0.788

HC+CNN (Wang et al., 2014) 0.84 0.65 0.735

IDSIA (Cireşan et al., 2013) 0.886 0.70 0.782

IPAL (Irshad et al., 2013) 0.698 0.74 0.718

SUTECH (Tashk et al., 2013) 0.70 0.72 0.709

NEC (Malon et al., 2013) 0.75 0.59 0.659

2012. Among the CNN based methods (DeepDet, CasNN (Chen et al., 2016a),505

HC+CNN (Wang et al., 2014), IDSIA (Cireşan et al., 2013), NEC (Malon et al.,

2013)), HC+CNN and NEC combine convolutional features and handcrafted

features, and other CNN based methods utilize convolutional features only.

4.3. Mitosis detection on 2014 MITOSIS dataset

We use our DeepSeg model to segment histology images of 2014 MITO-510

SIS dataset, and based on the segmentation results we estimate annotations of

bounding box format. Then we train the DeepDet with these predicted anno-

tations. Finally, to refine detections and filter out more false positives, we take

advantage of DeepVer model to verify the results of DeepDet further.

We randomly sample 240 HPF images from the 2014 MITOSIS training data515

as the validation set, and the remaining 960 HPF images as the training set.

There are 610 and 139 mitotic cells in the training set and the validation set,

respectively.

4.3.1. Implementation of DeepSeg model

As described above, the annotation of 2014 MITOSIS dataset only labels520

the centroid pixel of a mitotic cell, and such annotation format can not train
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Figure 9: (a): F scores of DeepDet with other methods on 2012 MITOSIS test set. (b):

Performance comparison with others in the PR plane.

an object detector directly. For achieving a finer bounding box ground truth,

we leverage the DeepSeg model to segment the images and estimate a bounding

box for each mitosis.

We use the 2012 MITOSIS dataset to train the DeepSeg model as it has pixel-525

level annotations. We sample patches of 521×521 pixels from HPF images. We

augment the training data through mirroring and rotating the image patches.

Since there are much more negative pixels than positive pixels, we perform

more augmentation on patches containing positive pixels than the patches only

having negative pixels, aiming at balancing the data. Binary label images can530

be easily generated based on the original pixel-level annotations to train the

deep segmentation model.

The DeepSeg model is trained with Caffe framework (Jia et al., 2014). The

FCN base model is trained with PASCAL semantic segmentation dataset. It

is publicly available on model zoo site of Caffe. 1 We follow the default train-535

ing configuration of FCN with learning rate 1e−10, momentum 0.99, weight

decay 0.0005, and batch size 1. We also modify the output channel number of

prediction layer to 2 for adapting the model to predict object or background.

1https://github.com/BVLC/caffe/wiki/Model-Zoo
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According to the stride of prediction layer, the FCN models have three ver-

sions: FCN-32s, FCN-16s and FCN-8s. The number in the model name is the540

pixel stride at the final prediction layer, and the three models are generated in

sequence (more details in (Long et al., 2015)). We first train the coarse one

FCN-32s, then train the finer stride versions of FCN models. FCN-16s model

is initialized with the parameters of the FCN-32s model we have trained. We

change the learning rate to 1e−13 when training the FCN-16s model. Final-545

ly, we train the FCN-8s model based on the generated FCN-16s model with a

learning rate 1e−14. We select the final FCN-8s model as the DeepSeg model.

The DeepSeg model is applied on the 2014 MITOSIS data and produces

segmentation results. Since the spatial resolution of a HPF image is too big, we

cut the image to 16 patches evenly when testing, and then stitch segmentation550

outputs of these patches to produce a full response image. We perform an adap-

tive binarization processing on the segmentation response map. The threshold

is produced by Otsu’s method (Otsu, 1975). For each mitosis centroid label,

we use the segmented mitosis blob covering the centroid as the new annotation.

We then get bounding box labels from the refined pixel-level ground truth. If555

there is no segmented mitotic region covering the centroid, we will assign a fixed

bounding box to it.

4.3.2. Implementation of DeepVer model

Although we have refined the bounding box of mitosis, it is still not very

accurate and reliable, which may introduce wrong supervision during the train-560

ing. Here we exploit the DeepVer model to further verify the detection results

of DeepDet. The verification model is based on the ResNet pre-trained on the

ImageNet dataset (Russakovsky et al., 2015b). It is trained on the extracted

detection patches of DeepDet. We keep the center of detection patch unchanged

and extend the patch to 96×96 pixels. If the patch is positive, we will rotate the565

patch with a 90-degree step to produce more positive samples since the number

of positive patches is relatively low. Meanwhile, we crop patches for each ground

truth centroid, and perform the same rotation augmentation on them. More-

27



over, the original annotation has labeled some hard mimics which are prone to

be wrongly identified as mitosis. We add these negative samples to our training570

data to improve the model capacity of recognizing the hard negatives. Finally,

there are totally 16,248 image patches in the training set. We train a 50-layer

ResNet as the DeepVer model. It can be seen as hard examples mining because

the training samples are from the detection results of DeepDet. The learning

rate is 0.01 and momentum is 0.9, and weight decay is 0.0001. We train the575

model for 12,000 iterations with a batch size of 64.

4.3.3. The effectiveness of DeepSeg and DeepVer models

We conduct some ablation experiments to demonstrate the effectiveness of

our methods.

DeepDet (fixed). We first train a base DeepDet model on the 2014 MITOSIS-580

training set. Its parameters setting follows the configuration in 2012 MITOSIS

dataset. We extract patches of 512 × 512 pixels from the training images and

re-scale them to 1024 × 1024 pixels to train the DeepDet model. The anchor

scales we used are 64, 128 and 256. We utilize a simple bounding box as the

ground truth of mitotic cell. The side length of the box is fixed to 30 pixels.585

The originally labeled centroid pixel lies in the center of the box. Through care-

ful validation on the dataset, the 30 × 30 square is found to be the best fixed

annotation. We name the detector trained with fixed annotations as “DeepDet

(fixed)”.

DeepDet+Seg. This DeepDet model is trained with the same data and param-590

eter setting as the DeepDet (fixed), but it leverages the refined bounding box

annotations provided by the DeepSeg model. We name this model as “Deep-

Det+Seg”. Table 5 shows that the DeepDet+Seg actually produces superior

detection quality on 2014 MITOSIS validation set, compared with the DeepDet

(fixed). This experimental result confirms the validity of refined annotations595

produced by the DeepSeg model.
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DeepDet+Seg+Ver. we apply the DeepVer model to the detection patches

produced by DeepDet+Seg in detection stage. We deploy a fusion method to

combine the confidences of the detection model and verification model, rather

than make judgments only by the latter one. This fusion strategy can exploit600

the valuable prediction scores given by DeepDet model. In our experiment, the

fusion takes a weighted sum of the two model scores, and the weight is optimised

on the validation set. We name this method as “DeepDet+Seg+Ver”, as it

utilizes the three deep models. It achieves a 0.582 F-score on the validation set

as shown in Table 5. The nearly 8% improvement in performance compared605

to the DeepDet+Seg mainly results from the capacity of DeepVer model to

distinguish negatives from detections. It demonstrates that the verification can

filter out false positives of DeepDet effectively.

Table 5 shows that the performance increases, as more models be applied.

With the segmentation model, the bounding box annotation can be finer and610

more accurate, and hence results in a better detector. And with the verifica-

tion model, the false positives can be massively discarded, hence the accuracy

advances remarkably.

Fig. 10 illustrates some detections examples of DeepDet+Seg and DeepDe-

t+Seg+Ver in validation set. The first five columns confirm that the Deep-615

Det+Seg+Ver can effectively identify false positives of DeepDet, due to the

capacity of DeepVer model to distinguish negatives from detections. The sixth

example shows a positive sample wrongly filtered by the DeepDet+Seg+Ver.

The last column illustrates a mitosis missed by DeepDet+Seg is identified by

the DeepDet+Seg+Ver. Fig. 11 shows the detection results of proposed Deep-620

Det+Seg+Ver approach on two HPFs from the 2014 MITOSIS validation set.

4.3.4. Results on the test set

We then focus on the performance of our approach on the test set of 2014

MITOSIS dataset. The test set has 496 HPFs and no ground truth is given.

Here we train the verification model using the detection patches of DeepDet+Seg625

from the training set and validation set. Experimental results on test set are
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Table 5: Performance results of our methods on 2014 MITOSIS validation set.

Method F-score

DeepDet (fixed) 0.489

DeepDet+Seg 0.505

DeepDet+Seg+Ver 0.582

(b) DeepDet+Seg+Ver 

(a) DeepDet+Seg 

Figure 10: Example detections of our proposed methods on the validation set of 2014 MI-

TOSIS dataset. (a) shows the detection results of DeepDet+Seg. (b) shows the results of

DeepDet+Seg+Ver, which combines the predictions of detection model and verification mod-

el. We show seven examples to compare the differences between the two results. Yellow, blue

and green boxes denote false positives, false negatives and true positives, respectively.
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Figure 11: Mitosis detection results of DeepDet+Seg+Ver on two HPFs of the 2014 MITOSIS

validation set. Yellow, blue and green boxes denote false positives, false negatives and true

positives, respectively.

shown in Table 6. The DeepDet+Seg achieves a 0.398 F-score, which is a

comparable result.

As expected, the DeepDet+Seg+Ver method achieves a higher F-score 0.437.

Compared with the DeepDet+Seg, DeepDet+Seg+Ver has an identical preci-630

sion, but a significant improvement on recall, which raises the F-score remark-

ably. The reason why the DeepDet+Seg has a lower recall is that it uses a

relatively high detection score 0.984 as the threshold. The high threshold is a

trade-off between the precision and recall. For example, if we take the score 0.9

as the decision threshold in DeepDet+Seg, its recall will increase to 0.522, but635

its precision will drop to 0.192, resulting in a much worse F-score 0.281. While

for the DeepDet+Seg+Ver, we take the detections of Deep+Seg with score high-

er than 0.88 for the following verification of DeepVer. It can keep more positive

detections and achieve a higher recall.

4.3.5. Comparison with other methods640

The performance comparison of our proposed method with other approaches

is reported in Table 7. Our method achieves a state-of-the-art performance with
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Table 6: Performance results of our methods on 2014 MITOSIS test set.

Method Precision Recall F-score

DeepDet+Seg 0.431 0.370 0.398

DeepDet+Seg+Ver 0.431 0.443 0.437

Table 7: Performance comparison of different approaches on 2014 MITOSIS test set. The first

four methods are participants of 2014 ICPR MITOS-ATYPIA contest (MITOS-ATYPIA-14,

2014). “-” denotes the results which are not released.

Method Precision Recall F-score

STRASBOURG - - 0.024

YILDIZ - - 0.167

MINES-CURIE-INSERM - - 0.235

CUHK 0.448 0.300 0.356

CasNN (Chen et al., 2016a) 0.411 0.478 0.442

DeepMitosis (DeepDet+Seg+Ver) 0.431 0.443 0.437

F-score 0.437, outperforming most of the methods except for the CasNN. The

precision of our DeepMitosis (DeepDet+Seg+Ver) method is higher than that

of CasNN, while our recall is inferior to the CasNN, which results in a 0.5% loss645

in F-score.

4.4. Time analysis

The target of automatic mitosis detection is to help expert pathologists in

clinical applications. Since the number of HPFs in a single whole slide may be

huge, it is significant to detect mitosis as quickly as possible. In our method,650

merely using the DeepDet model is able to obtain an excellent performance in

2012 MITOSIS dataset. Moreover, even the RPN module of our DeepDet model

can produce a very good result on the 2012 MITOSIS dataset as well. For a HPF

which has a spatial dimension 2084 × 2084 pixels, the DeepDet takes 0.72 s to

detect mitosis and the RPN takes 0.68 s. The GPU we used in our experiment655
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is NVIDIA GeForce GTX TITAN X. As for the 2014 MITOSIS dataset, the

system consists of two components in detection stage: detection model and

verification model. The DeepDet+Seg takes 0.36 s per HPF in the test. The

faster speed of detection model on 2014 image than 2012 Image results from

the former has a relatively smaller resolution(1539 × 1376 pixels). The elapsed660

time of DeepVer depends on the processing speed on an image patch and the

number of candidate patches DeepDet+Seg produced in a HPF. The DeepVer

model takes 0.023 seconds per patch. On average, the DeepDet+Seg produces

two detections with score higher than 0.8 per HPF. Hence the verification model

takes about 0.05 seconds per HPF, and the total time of DeepDet+Seg+Ver is665

about 0.41 s for a HPF in 2014 MITOSIS dataset.

Compared with the IDSIA (Cireşan et al., 2013), which requires 31 s to

apply a network on an input HPF image and 8 minutes to utilize two networks

on eight variants for better performance, our approach outperforms it with a

much faster speed. The efficiency of our method makes it more practical for670

clinical usage.

5. Conclusions and future works

In this paper, we propose a system named DeepMitosis for mitosis detection

in H&E stained slide images. Our method leverages a deep detection mod-

el to perform detection. We adopt a general object detection method to the675

histopathology images and achieves excellent performance on 2012 MITOSIS

dataset. It is noteworthy that merely applying a RPN can yield a comparative

result. Since the 2014 MITOSIS dataset does not provide fine bounding box

ground truth, we exploit a deep segmentation model to estimate the mitotic

regions. The experimental results confirm that the segmentation result refines680

the annotations and improves the performance of detector. The effectiveness of

the deep segmentation module indicates that it can significantly reduce the im-

age labeling efforts in developing medical image analysis system based on deep

learning. Meanwhile, we utilize a deep verification model to verify the results
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of detection model, making up for the inferior capacity of the detector trained685

on the generated bounding boxes. The fused scores of the detector and the

verification model can produce the state-of-the-art performance on the test set

of 2014 MITOSIS dataset.

In future, we will explore methods that can produce more accurate pixel-wise

labels for the centroid annotations, so that we can train more powerful detector690

on 2014 MITOSIS dataset to further improve the performance. Besides, we will

study how to integrate the proposed DeepSeg, DeepDet and DeepVer networks

into an end-to-end network trained using weak clinical annotations for accurate

clinical diagnosis.
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