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a b s t r a c t 

This paper presents a pedestrian detection approach that uses neural features from a fully convolutional 

network (FCN) instead of features manually designed. We train an AdaBoost detector per layer and com- 

pare the performance to find the optimal layer for this task. Combining results of multiple detectors can 

further improve the performance. In order to adapt the FCN to pedestrian detection task, we fine-tune 

it with bounding boxes labels. Using neural features generated by fine-tuned FCN, the log-average miss 

rate (MR) on Caltech pedestrian dataset is 18.79% by a single detector and 16.50% by combining two de- 

tectors. We also evaluate the proposed method on INRIA pedestrian dataset and the MR is 11.17% with a 

single detector and 9.91% through combining two detectors. The improved performance indicates that the 

proposed neural features are applicable to pedestrian detection task, due to their strong representation. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Recently, the field of artificial intelligence has achieved sig-

nificant progress and many relevant applications [1,2] have ap-

peared. Pedestrian detection is a classical and important task in

computer vision. There are many real-life applications, such as

robotics, video surveillance and autonomous driving. And there

has been lots of research on pedestrian detection over the past

few years. Generally, a pedestrian detector involves three steps:

(1) proposing bounding boxes that potentially contain pedestrians;

(2) extracting features of the proposed bounding boxes; (3) judg-

ing whether a person exists within a bounding box using the ex-

tracted features. As is pointed out in the investigation of recent

progress [3] , most progress is due to the improvements in features.

The frequently-used features in pedestrian detection include His-

tograms of Oriented Gradients (HOG) [4] , LUV, Local Binary Pattern

(LBP) [5] , Haar-like features [6] , texture [7] , DWT [8,9] , and entropy

[10,11] . Dollár et al. [12] propose channel features, which consist of

LUV, gradient histogram and gradient magnitude. The features in

[12] are very effective and have been widely adopted in pedestrian

detection. Some methods develop different operations on the chan-

nel features and achieve improvements in performance [13–15] . In

addition, some methods take advantage of additional information

such as optical flow [3,16,17] and stereo images [18] to improve

the accuracy or efficiency. Since the features play such a vital role,
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t is significant to seek a more powerful feature with the potential

o further optimize the performance. 

A novel type of neural network named fully convolutional net-

ork (FCN) [19] has been proposed recently. Long et al. [19] re-

ove the final classifier layer of classic convolutional networks

nd convert all fully connected layers into convolutional layers. The

etwork is able to produce pixel-dense outputs for semantic seg-

entation task. The outputs of FCN are finer and more structural

han traditional convolutional networks. It inspires us that exploit-

ng the layer output of FCN is expected to improve the perfor-

ance of detection task. Furthermore, FCN is trained in a pixel-

o-pixel way for semantic segmentation, so it can be fine-tuned

o other data using pixel-level labels. We choose FCN instead of

ther popular neural networks to extract features and fine-tune the

arameters of FCN with a pedestrian dataset. We name the fea-

ures produced by FCN as “Neural Features”. The neural features

ave stronger representation than hand-crafted channel features

ince the former are learned automatically from data. Besides, neu-

al features are sophisticated and discriminative enough to judge

hether the window contains a person. So we utilize the neural

eatures for training detectors. 

Pedestrian detection is a canonical case of object detection and

he benchmark datasets are available. Besides, there have been

any methods proposed to solve this detection problem, making

t convenient to compare the performance of our method with

ther approaches for demonstrating the effectiveness of our pro-

osed neural features. 

In this paper, we have three main contributions. (1) We

ombine neural features from FCN with a traditional classifier,

daBoost. The strong representation capacity of neural features

http://dx.doi.org/10.1016/j.neucom.2017.01.084
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.01.084&domain=pdf
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1 https://github.com/BVLC/caffe/wiki/Model-Zoo . 
oosts the pedestrian detection performance. (2) We propose a

eakly supervised learning method to fine-tune the neural fea-

ures. We change bounding boxes annotations to pixel-level labels

o train the FCN models which are originally trained with seman-

ic segmentation dataset. (3) Our method fuses the detection re-

ults of multiple detectors trained on neural features of different

ayers. The complementarity of these detectors contributes to the

mprovement of detection accuracy. 

The rest of this paper is organized as follows. Section 2 gives a

rief review of related work on pedestrian detection. Section 3 in-

roduces the details of our neural features and its application in

edestrian detection. Section 4 evaluates the proposed approach on

wo public benchmark datasets. Finally, Section 5 gives the conclu-

ion and future work. 

. Related work 

Since the Viola–Jones framework [20] , many fine hand-crafted

eatures have been proposed. Dalal and Triggs propose Histogram

f Gradients (HOG) [4] , which proves to be effective for the detec-

ion task and has become a classical descriptor. Based on the HOG

eature, some novel methods are proposed [3,13,17,21–26] . Takuya

t al. [21] apply PCA to HOG and select a proper subset of PCA-

OG feature. It reduces the dimensionality of the feature vectors

ithout lowering the performance. Felzenswalb et al. [23] propose

eformable Part Model (DPM) and utilize a variant of HOG [4] as

eature. DPM is robust to occlusion and pose variations. So far,

hannel features combined with boosted trees may be the most

opular method for pedestrian detection. Dollár et al. [12,25] pro-

ose a type of classical channel features that include LUV color

hannels, gradient magnitude and quantized orientations. With ap-

roximation algorithm [27] , the channel features computed at a

ingle scale can be used to approximate the features at nearby

cales. Since the work [12] , many methods have been developed to

mprove the capacity of the channel features. Some of them focus

n the exploitation of filtration on channel features. For example,

DCF [13] derives filters from data to remove local correlations of

hannels. The filtered features are decorrelated and can improve

he accuracy of the detector. Informed Haar [6] designs rectangu-

ar templates on pedestrian shape model and the produced Haar-

ike features are robust against occlusions. In addition, some ap-

roaches add more features, such as optical flow, LBP, covariance

nd so on. For instance, SpatialPooling(+) [17] utilizes these ad-

itional features and executes spatial pooling on them to achieve

etter robustness to noise. Katamari [3] makes use of context in-

ormation and optical flow. Both two methods take advantage of

dditional features to enhance representation. Unlike these meth-

ds, we utilize neural features from FCN to replace the manually

esigned channel features. 

Deep learning has revolutionized the computer vision. The

ethods based on Convolutional neural networks (CNNs) have set

p new records in many vision tasks, such as image classification

28–30] , object detection [31-33] , and semantic segmentation [19] .

arros et al. [30] propose Multichannel Convolutional Neural Net-

ork (MCCNN) to recognize multimodal emotional state. They uti-

ize a deep hierarchical feature to deal with spontaneous emotions,

nd integrate multiple modalities for non-verbal emotion recog-

ition. Their results outperform other methods based on hand-

rafted features. Some methods apply the deep learning structure

o kernel applications, which use the deep architectures for ex-

racting feature [34,35] . Many deep-learning based approaches ap-

ear in pedestrian detection [36–41] . Sermanet et al. [36] pre-

rain CNN in an unsupervised mode based on convolutional sparse

oding for pedestrian detection. JointDeep [37] takes advantage of

 deep learning framework to learn four components in pedes-

rian detection jointly: feature extraction, deformation handling,
cclusion handling, and classifiers. To model the complex appear-

nce variations of pedestrian, SDN [38] adds switchable layers in

 convolutional neural network. The switchable layers are built

ith RBM variants. DeepCascade [39] takes advantage of the ef-

ciency of cascade classifiers to improve the detection speed. It

uns in real-time at 15 frames per second, which is the fastest

eep learning based methods for pedestrian detection. Recently,

osang et al. [40] train small CifarNet and large AlexNet [28] for

edestrian detection and demonstrate that they are both effective.

hen training AlexNet, they use the R-CNN (“Regions with CNN

eatures”) [42] recipe. They also demonstrate that pre-training on

urrogate tasks and utilizing more data are favorable to the perfor-

ance. DeepPed [41] is built upon the work of [40] and optimizes

he stages of detection pipeline to improve the accuracy. Previ-

us deep learning based methods often employ the convolutional

eural networks to perform classification. However, it is extremely

low to run CNN detector in a sliding window fashion, so most of

hese methods use proposals from faster detectors as inputs. Our

ethod merely uses neural network to extract features. We take

ome layer outputs of FCN as features and adapt them to pedes-

rian detection by fine-tuning FCN with weakly-supervised labels.

e use the neural features to train an AdaBoost classifier. Since

he AdaBoost is much faster than the CNN, we run it in a sliding

indow fashion without proposals. 

Inspired by FCN, holistically-nested edge detection (HED) [43] is

roposed. It produces an end-to-end edge detection system in an

mage-to-image training way that is similar to FCN. HED architec-

ure also connects the last convolutional layer in each stage to side

utput layer, and thus yields multi-scale predictions. The multi-

cale results provide a more accurate edge pixel localization and

efine the prediction. 

. Neural features 

In this section, we give details on how to make use of neu-

al features in pedestrian detection task. In the training stage, FCN

eural features of full images are produced and then the positive

nd negative samples extracted from the feature maps are utilized

or training an AdaBoost classifier. In the detection stage, we pro-

uce neural features of testing images and construct feature pyra-

ids by approximation, then the trained detector is applied in a

liding window manner. We give detailed explanations for each

tep in the following subsections, and introduce model fine-tuning

nd feature dimensionality reduction. 

.1. Extracting neural features from FCN 

Convolutional neural networks can serve as feature extractors

hat produce feature hierarchies due to their multi-layer architec-

ure. One of their advantages is that they produce features from

aw pixels automatically rather than by hand-crafted way. 

Fully convolutional networks are produced based on Caffe

ramework [45] by fine-tuning some popular ConvNets such as

lexNet [28] , VGG nets [29] and GoogleNet [46] . Some FCN mod-

ls are publicly available on model zoo site of Caffe. 1 In this pa-

er, we use three FCN models that are trained on PASCAL VOC

egmentation challenge. They are all fine-tuned from the VGG-16

odel. We call them “FCN-32s”, “FCN-16s” and “FCN-8s” for short

nd they are illustrated in Fig. 1 . In semantic segmentation task,

CN-32s model is firstly generated. Its stride at prediction layer is

2 pixels, which is coarse and limits the scale of detail. In order to

efine the spatial precision, pool4 layer produces prediction with

 down-sampling factor 16. By fusing the pool4 prediction and

https://github.com/BVLC/caffe/wiki/Model-Zoo
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Fig. 1. Comparison of different FCN models. FCN-32s is the base model, and 16s model is generated by integrating pool 4 layer’s score with 32s model’s score. FCN-8s model 

further combines the score of pool 3 layer with that of 16s model. The input image is from Caltech pedestrian dataset [44] . The “32 × score” means a score map that is 

enlarged by a factor of 32 through deconvolution layer, aiming to conform to the resolution of the original image. 

Fig. 2. Visualization of some layer outputs in FCN-32s model. The original color image is the same as Fig. 1 . We use heatmap here to present better view. (a) shows relu 2 − 2 

layer output; (b) shows relu 3 − 3 layer outputs; (c) shows relu 4 − 1 layer outputs. From low layer to high layer, the channel number increases while the scale is diminishing. 

Low layer contains more simple structures while higher layer contains more semantic information. 
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2 Throughout the paper, we only colorize the feature maps in Fig. 2 and all other 

images are shown normally. 
the original score, FCN-32s model turns into FCN-16s model with

finer outputs and better performance. Similarly, combing FCN-16s

result with the prediction produced by pool3 layer, whose down-

sampling factor is 8, can generate a more accurate model called

FCN-8s. 

Neural features in this paper refer to the layer outputs of FCN.

Filters in different layers can extract different features. The low-

layer features are usually associated with generic representations

for visual problems while the high-layer features are more re-

lated to specific task and dataset. Fig. 2 shows some different layer
utputs generated by FCN-32s model. We normalize the features

ithin [0,255] and colorize them for a better view in Fig. 2 . 2 

As is shown in Fig. 2 , the spatial resolution of feature map grad-

ally decreases while the channel number increases along the net-

ork. Specifically, the numbers of feature channels in relu 2 − 2 ,

elu 3 − 3 and relu 4 − 1 are 128, 256 and 512, respectively. And
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Fig. 3. Pipeline of training pedestrian detector with neural features. (a) A positive image patch extracted from the training images. (b) Neural features of the image patch 

are computed using FCN. (c) The neural features are vectorized to a fixed-length feature vector. (d) This feature vector is used to train the AdaBoost classifier. 
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heir spatial scales with respect to the original image are 0.5, 0.25

nd 0.125. As described above, the outputs of low layers are more

elevant with low-level features and details than high layers. We

an observe many obvious edge-like lines in relu 2 − 2 layer, while

n relu 4 − 1 layer the response is more semantical. 

Among these different layers’ feature maps, some features are

uitable for detecting the pedestrian while others are not. The key

s to find the most appropriate layer output for pedestrian detec-

ion. So we need to extract different layer outputs and train classi-

ers using these features individually. Through comparing the per-

ormance of different detectors on the validation set, we can find

he best representation for this task. 

.2. Training pedestrian detectors using neural features 

The neural features produced by FCN are used to train an Ad-

Boost classifier for pedestrian detection. AdaBoost has been one

f the most frequently used classifiers in this field. It consists of

 great deal of “weak classifiers”, and decision trees here serve as

eak classifiers. Though a single tree is weak, the weighted sum

f thousands of trees form a powerful classifier. 

The training process is illustrated in Fig. 3 . Take Caltech pedes-

rian dataset as an example. Positive and negative window samples

re extracted from images and resized to a uniform size, which is

4 × 32 pixels in the Caltech dataset [44] . FCN takes in these win-

ow images and produces differen layer outputs, i.e., the neural

eatures. In practice, we compute the convolutional feature map for

n entire image and then crop windows from the shared feature

ap. It avoids performing a ConvNet forward pass for each win-

ow and reduces a great deal of computational cost. We can select

ne specific layer output to train a detector. The spatial resolution

f window features is 16 × 8, which is a quarter of the size of the

riginal window image. The feature channel number N is consis-

ent with the kernel number of the convolution layer. Then neural

eatures in a window are vectorized to a vector for training deci-

ion trees of AdaBoost classifier. In order to find the best feature,

e train a detector for every layer output. 

In the training stage, positive windows are extracted according

o the ground truth. In order to augment the training data, we flip

he positive windows horizontally. In the first pass of AdaBoost

raining, negative windows are extracted from images randomly.

n the remaining bootstrapping passes, positive samples keep un-

hanged while negative samples are accumulated by the hard sam-

les misclassified in previous stages. The hard mining makes the

lassifier focus on difficult instances, which improves the capacity

f classifier. 
.3. Applying pedestrian detectors to neural features 

After training detectors, we apply them to neural features ex-

racted by FCN in detection stage. In Fig. 4 , we plot the process

f performing multi-scale detection. We extract neural features of

riginal scale image and then take advantage of the power law to

pproximate neural features at nearby scales. Next, detection win-

ow slides on these scaled neural features maps. Finally, features

xtracted from the windows are judged by classifiers to produce

redictions. 

For a test image, its feature pyramids are constructed according

o the power law by resizing the neural features of the original

mage to different scales. Dollár et al. [25] find that for some types

f features in pedestrian images, the ratio of two scales’ feature

xpectation follows a power function of the ratio of the scales. The

ormula is shown below. 

f �(I s 1 ) / f �(I s 2 ) = (s 1 /s 2) −λ� + ε (1)

� denotes any low-level shift invariant function that transforms

n image I to a channel image �(I). I s 1 denotes the image I in scale

 1. The λ here is the parameter of the power law, and the ε is the

eviation from the power law. Every type of transformation has its

pecific λ�. 

The key point of the power law is that the finely sampled fea-

ure pyramids can be obtained from the coarsely sampled ones by

xtrapolation. It can spare a great deal of time by avoiding com-

uting features for each scale. With the power law, the construc-

ion of feature pyramid can be very efficient. In our task, only the

eural features of the original scale image are actually computed

sing FCN, while the feature of other scales are all approximated

y the power law. The λ in the power law can be adjusted and we

et it to 0 by default. The number of scales per octave is 8 and the

ax scale is 1. 

We slide the detection window on the feature pyramids of test

mages. The neural features of windows are sent to the AdaBoost

lassifier to judge whether the windows contain persons. 

.4. Fine-tuning FCN models on pedestrian dataset 

Besides using the original FCN models, we fine-tune FCN with

 pedestrian dataset, which makes the model more suitable for

edestrian detection task. 

As described above, FCN model is generated by adapting VGG

et into the fully convolutional network. Long et al. [19] fine-tune

ll layers of VGG net, which guarantees a good performance on

he PASCAL semantic segmentation task. Since the PASCAL VOC
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Boosted Trees

Fig. 4. Pipeline of multi-scale detection. Fixed-size window slides on the image pyramids, and then the neural features of these windows are judged by the boosted decision 

trees we have trained. In practice, we apply sliding window on the neural features maps rather than the images for efficiency. 
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1  
dataset is very different from common pedestrian benchmarks, we

speculate that the potential of FCN neural features on pedestrian

datasets is not fully explored. It is very natural to fine-tune the

model parameters with pedestrian datasets. 

Through converting fully connected layers to fully convolutional

layers, FCN can produce an output corresponding to the spatial

structure of the input image. It provides a pixel-to-pixel learning

mode whereby we can utilize pixel-level annotations to train a

network. 

We use the Caltech pedestrian dataset to fine-tune the FCN

model since the dataset has a relatively large number of images.

We take FCN-32s model as the initial model. In order to train the

FCN, we need to produce pedestrian annotations in pixel level.

Since the original ground truth of the Caltech dataset [44] is in

the form of bounding box, we convert it to label image by set-

ting the bounding box regions to value 1 and the background to

0. A bounding box contains some context around the person, so

it includes pixels that don’t belong to a person in the generated

annotations. We utilize this weak supervision to fine tune the FCN

models. There are two classes in our task, so we modify the output

number of prediction layer to 2. 

Fig. 5 shows the visual comparison between FCN model out-

puts and those of fine-tuned model. There are 21 classes in PAS-

CAL VOC semantic segmentation task, so the number of the chan-

nel of FCN prediction layer is 21. The 16th channel is “person”

class as is shown in Fig. 5 . For the fine-tuned model, we also

show the “person” channel of its final 2-channel output. The first

two rows show that the fine-tuned FCN model gives a higher re-

sponse to the low-resolution pedestrians than the original model

does. It means that the neural features of fine-tuned model are

superior to the original model in detecting small-size pedestrians.

The third row illustrates an interesting phenomenon. The back of a

motorcyclist obtains a strong response in fine-tuned model while

little response in the original model. It demonstrates that the

fine-tuned FCN model can better detect pedestrians in particular

appearance. There are some pedestrians with particular appear-

ance in the pedestrian dataset, and the fine-tuned model can learn

how to recognize them. Though we only compare the last layer
 c
utput of the two models, we can infer that the middle-layer out-

uts of the fine-tuned FCN model are also more related to the

edestrian data than the original model. 

.5. Feature dimensionality reduction 

Neural features usually have a relatively high dimension which

esults in high space complexity, hence we apply the commonly

sed Principal Components Analysis (PCA) [47] algorithm to de-

rease the dimension of features. PCA can yield more discrim-

native, robust and compact representation than such standard

escriptors as PCA-HOG [21] and PCA-SIFT [48] . 

We collect thousands of neural feature maps randomly. Every

oint in a feature map is a vector and we choose 20 0 0 points

tochastically in each feature map. We apply eigenvalue decom-

osition to the covariance matrix of these collected feature vec-

ors, and the acquired eigenvectors form the eigenspace of neural

eatures. Then we select top N eigenvectors and take them as the

rojection matrix of PCA. Given the projection matrix, neural fea-

ures can be projected to a more compact representation. We pre-

ompute the eigenspace offline and save the top N eigenvectors as

rojection matrix. 

. Experiments 

In this section, we evaluate our approach for pedestrian detec-

ion on two common datasets. We build our detection work based

n Dollár’s framework [49] . Neural features are extracted using the

ublicly available Caffe platform [45] on a single NVIDIA Titan X

PU with 12 GB memory. 

.1. Datasets 

Our approach is evaluated on two datasets, one is Caltech

edestrian dataset and the other is INRIA pedestrian dataset [4] .

e use the log-average miss rate (MR) over nine points between

0 −2 and 10 0 false positives per image to measure the result. It is

alculated by the Dollár’s toolbox [49] . 
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Fig. 5. Visualization of “person” channel of different FCN models outputs. (a) shows three images from Caltech pedestrian dataset. The green bounding boxes are ground 

truth of pedestrians. (b) shows the visualization of FCN-32s model’s “person” channel. (c) shows the visualization of fine-tuned FCN-32s model’s “person” channel. 
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Table 1 

Log-average miss rate (MR) on the Caltech valida- 

tion set with FCN-32s model when varying training 

feature. The “Size” means the scale of feature map 

about the original image. 

Layer Channel number Size MR(%) 

relu 2 − 2 128 1/2 62.26 

relu 3 − 1 256 1/4 36.88 

con v 3 − 2 256 1/4 32.51 

relu 3 − 2 256 1/4 31.04 

con v 3 − 3 256 1/4 32.59 

relu 3 − 3 256 1/4 22.44 

con v 4 − 3 512 1/8 48.51 

relu 5 − 3 512 1/16 78.24 
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.1.0.1. Caltech pedestrian dataset. This is a large-scale, challenging

ataset and has been serving as a standard benchmark for pedes-

rian detection. Collected from a vehicle driving through streets in

n urban region, the Caltech dataset [44] consists of nearly ten

ours of videos. There are a total of 350,0 0 0 bounding boxes and

300 unique pedestrians annotated in the dataset. The sampling

ate is 30 fps and the resolution of every frame is 640 × 480. We

se set00-04 as training set, set05 as validation set, and the re-

aining set06-10 as test set. In our experiment, we extract one

ample out of every 10 frames in the training set and the valida-

ion set, and the sample interval is 30 for the test set. The perfor-

ance is measured under the “Reasonable Set” [44] in which the

eight of pedestrians is taller than 50 pixels. 

.1.0.2. INRIA pedestrian dataset. INRIA pedestrian dataset [4] is

mong the most popular and oldest datasets for pedestrian detec-

ion. It has various backgrounds and high-quality annotations of

edestrians. Though the quantity is small, the diversity of images

rings a stronger generalisation capacity than some other datasets

3] . Since the resolution of images in INRIA dataset is not fixed, we

esize all images to 500 × 500 pixels, which is the default input

ize of FCN model. The resolution of persons in INRIA is relatively

arge, so we set the extraction window size to 128 × 64 pixels. 

.2. Experiments with different models and layers 

The output of every layer in FCN is a specific feature, so we

an get hierarchical features efficiently by running the network.

e utilize these different features to train AdaBoost classifiers for
eeking the feature layer with the best performance. According

o experience and our preliminary experiments, the performance

ariation of different layers is consistent among different stride

ersions of FCN models. So we choose FCN-32s model to compare

he performance of different feature layers for simplicity. 

Table 1 shows the preliminary results on the Caltech valida-

ion set when the feature varies. We use depth 4 decision trees

n this experiment. It can be observed that the relu 3 − 3 layer

chieves the best result among these features. This phenomenon

akes sense, because FCN model is trained for the 21-class PASCAL

OC semantic segmentation task, and the higher layers such as

on v 4 − 3 and relu 5 − 3 are more related to the specific dataset and

ess general. Moreover, the big stride of these layers makes their

utput plane too coarse to be utilized for detection. At the other
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Table 2 

Log-average miss rate (MR) of different models’ 

relu 3 − 3 features on the Caltech validation set. 

The “tree-depth” refers to the depth of trees we 

used in the AdaBoost classifier. 

Tree-depth 

3 4 5 

FCN-32s 23.81 22.44 27.88 

FCN-16s 22.47 25.58 28.59 

FCN-8s 25.40 28.34 27.89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Performance of FCN-32s on the Caltech test set as feature dimension ( N ) varied. 

The original 256-dimension feature has a 23.59% MR. 

Dimension 10 20 30 34 40 50 60 

MR(%) 49.94 28.53 27.76 25.94 25.87 24.92 24.22 

Eigen (%) 41.23 55.71 64.38 67.16 70.67 75.37 79.00 
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extreme, low layers such as relu 2 − 2 produce features that are

too general and not discriminative enough. The middle layers are

therefore a tradeoff between general and semantical, and mean-

while they have suitable strides that can reflect fine space struc-

ture of image. So it is reasonable that the relu 3 − 3 layer yields the

best performance. 

Now that we have found the best layer for this task, our next

target is to find out the most appropriate model from the three

stride versions of FCN. Table 2 shows the performances of detec-

tors trained with relu 3 − 3 layer features of various FCN models.

It shows that the MR is almost at the same level among different

models, especially the FCN-16s model and FCN-32s model. FCN-8s

performs best in the original semantic segmentation task [19] due

to its finer predictions. But in our task, FCN-8s model achieves a

slightly higher MR than other models. The reason may be that the

relu 3 − 3 layer in FCN-8s is more relevant to the original PASCAL

VOC semantic segmentation dataset. In FCN model, relu 3 − 3 layer

is linked to pool3 layer. As shown in Fig. 1 , the pool3 layer in FCN-

8s model connects with a prediction layer named “pool3 predic-

tion”, which has been fine-tuned to directly yield predication for

semantic segmentation. In contrast, the pool3 layer in FCN-32s or

FCN-16s only connects with layer con v 4 − 1 and does not connect

with any prediction layer directly, which makes it more general

compared with the same layer in FCN-8s. 

We also study the influence of tree depth of AdaBoost on the

performance. We find that when the depth is three or four, the MR

is low, while increasing the tree depth to five appears to damage

the performance. It indicates that the depth-5 tree is too complex

for our task and may result in overfitting. Since deeper trees need

more data [13] , it is appropriate to use depth-3 or depth-4 tree in

our experiment. 

Based on the experiments performed on the validation set, we

choose FCN-16s tree-depth 3 model and FCN-32s tree-depth 4

model in the rest of the experiments. Their MR on the Caltech test

set are 22.07% and 23.59%, respectively. 

4.3. Data augmentation on positive training samples 

In the above experiments, when training the AdaBoost classifier,

we apply horizontal flip on positive samples to augment training

data. We can translate or rotate feature maps of positive samples

to produce more training samples. In our experiment, we trans-

late the positive sample window maps in x direction as well as

y direction. It results in nine map variants in total. These feature

variants are shown in Fig. 6 . Using different combinations of these

feature variants, we can train more detectors that may outperform

the original one. For example, we train a classifier using the first

two variants in the first row of Fig. 6 (b) and named it as “V 1”. 

4.4. Dimension reduction 

The channel number of relu 3 − 3 layer is 256, which is rela-

tively large. To reduce the feature dimension, we use PCA as de-

scribed above. The number of dimension to keep is a compromise
etween performance and complexity. We select the top N eigen-

ectors in eigenspace to project the feature, and vary N to find the

uitable number of dimension. Results are shown in Table 3 . Note

hat we use the FCN-32s tree-depth 4 model here, and its MR on

he Caltech test set is 23.59%. 

The first row in Table 3 denotes the remained dimension after

perating PCA. The second row denotes the log-average miss rate

MR) that the detector obtained, and the last row shows the pro-

ortion of top N eigenvalues. As expected, increasing the remained

imensionality of feature vector can bring lower MR, but the ef-

ect gradually gets less noticeable. It indicates that the first several

omponents of the PCA subspace are critical for expressing useful

eatures for this task while the next ones are getting less and less

seful. 

.5. Fusion of detections 

In this section, we will use fusion to boost the accuracy of our

etections. We employ two strategies to fuse detection results. The

rst one is fusing the results of detectors trained on different layer

eatures, and the second one is incorporating detectors that are

rained on the same layer feature but with different sample vari-

nts. 

.5.1. Fusing detection results of different layers 

As mentioned above, different layer outputs denote different

evel features. Since we can train a specific classifier using one

ayer feature and obtain the corresponding detection result, it may

mprove performance if we combine these results in a certain way.

esides the best single detector relu 3 − 3 , we look for other layers

hat are diverse and valuable. 

Detection results consist of detected bounding boxes and con-

dence scores. We give different weights to the bounding boxes

cores produced by different detectors. In our experiment, the

eight of score generated by relu 3 − 3 detector is fixed to one

nd the weight of the other one detector’s score is adjustable. Af-

er gathering these detections, we use non-maximal suppression

NMS) to get the final result. NMS is usually used to suppress mul-

iple detections that are overlapped. For each pair of overlapped

ounding boxes, the bounding box with a lower score will be sup-

ressed if the ratio of the overlapping part that takes up the union

s larger than a threshold θ . Therefore the fusion mechanism has

o tune two parameters, one of which is the overlap threshold θ
nd the other the weight of the weaker detector score ω. The two

arameters are optimised by grid search on the Caltech validation

et. 

We try to use some layers to fuse with relu 3 − 3 detections.

esults on the Caltech test set are reported in Table 4 . We use

CN-32s model in this experiment. The first row shows MR of cor-

esponding detectors, and the second row contains the MR fused

ith relu 3 − 3 result. We observe that fusion on detections from

ifferent layers indeed improves the performance. It indicates that

he results of detectors trained with diverse layers are complemen-

ary to a certain extent. 

.5.2. Fusing detection results of the same layer 

The second strategy of fusion is combining the detection re-

ults of detectors that trained with the same layer neural feature.
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Fig. 6. Variants of positive sample. (a) shows nine variants in sample image. The image has been resized to 64 × 32. The shift distance is four pixels, and arrows in the figure 

indicate the shift direction. (b) shows the feature maps of variants. The shift distance is one unit, which corresponds to four pixels in the original image. 

Table 4 

Log-average miss rate (MR) of fusing relu 3 − 3 detector with other layers detectors on the 

Caltech test set, the MR of relu 3 − 3 detector is 23.59%. We use FCN-32s model here. 

relu 2 − 2 detector con v 3 − 2 detector con v 4 − 3 detector 

Original detection 44.26 25.95 48.24 

Fused with relu 3 − 3 23.28 21.75 22.86 

Table 5 

Log-average miss rate (MR) of detectors 

on the Caltech test set. 

Norm V 1 Fused 

FCN-16s 22.07 25.34 20.31 

FCN-32s 23.59 25.77 21.85 
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lthough using the same layer feature, the AdaBoost classifiers are

rained with diverse positive samples variants, which leads to dif-

erent detectors. The positive samples variants are illustrated in

ig. 6 . We train a detector named V1 using the first two variants

f positive samples and then fuse it with the original detector. The

R of these detectors on test set is shown in Table 5 . We refer

o the original detectors as “Norm”, which are trained in the norm

ata augmentation way (flip the positive sample). The parameters

and ω are optimised on the Caltech validation set. 

It is observed that fusing multiple detectors that are trained

ith different f eature variants, decreases the MR by about 2 %

ompared with the Norm detectors. Feature map variants have dif-

erent biases in translation direction, so the detectors trained with

hem learn the ability to handle these variants. Fusion can exploit

heir complementarity and achieve a considerable improvement in

erformance. 
.6. Fine-tuning FCN models 

We fine-tune the FCN models with Caffe framework on

et00-05 of Caltech pedestrian dataset. Since the amount of data is

ritical for training neural networks, we reduce the sample inter-

al to three for getting more training images. FCN models are fine-

uned in sequence. We firstly fine-tune the FCN-32s model and

hen the FCN-16s, and lastly the FCN-8s. These fine-tuned mod-

ls are referred to as “FCN-Caltech”. The FCN-Caltech-32s model is

nitialized from FCN-32s model. 

.6.0.1. Implementation details. The default parameters settings in

CN training are publicly available. The learning rate is 1e-10; the

omentum is 0.99; weight decay is 0.0 0 05 and batch-size is 1. We

ollow the default settings in our experiments. The original output

umber of prediction layer is 21 for PASCAL VOC semantic seg-

entation task, and we change it to 2 so that the network can be

ne-tuned for predicting two classes (person and background). 

.6.0.2. Ground truth generation. FCN model is trained using pixel-

evel label, which provides every pixel’s category. We transfer the

riginal bounding box ground truth to label images. The person re-

ion is set to be 1 and the background region is 0. 

We fine-tune the FCN-32s model using Caltech pedestrian train-

ng set. It takes about 33 h on a GPU for 180 k iterations. The train-

ng process is terminated when the loss converges and the visual
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Table 6 

Log-average miss rate (MR) of fine-tuned models on the Caltech test set. 

Model FCN-Caltech-32s FCN-Caltech-16s FCN-Caltech-8s 

MR(%) 20.02 20.69 20.68 

MR(Large-model-size) 19.30 19.40 18.79 

Table 7 

Log-average miss rate (MR) of FCN-Caltech-32s 

models on the Caltech test set. The three models 

are trained using different batch sizes. 

Batch size 1 10 20 

Iteration number 180 k 18 k 9 k 

MR(%) 20.02 21.50 21.73 

Table 8 

Log-average miss rate (MR) of fusing detection re- 

sults of FCN-Caltech models on the Caltech test set. 

Model MR(%) Fused MR(%) 

FCN-Caltech-32s 20.02 17.72 

FCN-Caltech-8s 20.68 

FCN-Caltech-32s 20.02 16.50 

FCN-Caltech-8s(Large) 18.79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Log-average miss rate (MR) of different mod- 

els on INRIA test set. 

Model FCN-32s FCN-16s FCN-8s 

MR(%) 14.14 15.90 15.29 
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3 http://www.vision.caltech.edu/Image _ Datasets/CaltechPedestrians . 
output of network barely changes. And then, we initialize the FCN-

Caltech-16s model with the 32s model we have fine-tuned. The

base learning rate is 1e-13 by default. The FCN-Caltech-16s model

has a new prediction layer produced from pool4 layer. Then the

FCN-Caltech-8s model is fine-tuned as the same training mode and

initialized from the FCN-Caltech-16s model we have trained. Train-

ing the 16s and 8s model takes about another 26 h, respectively. 

Table 6 shows the results of FCN-Caltech models on the Cal-

tech test set. We use the relu 3 − 3 layer output of these models

as neural features to train detectors. The three fine-tuned models

have similar performance. The FCN-Caltech-32s model obtains the

lowest MR 20.02%, which is 2 % lower than the original best result

22.07% produced by FCN-16s model. It indicates that fine-tuning is

effective and can adapt models to our task and data. 

To verify that the batch size one is suitable for our task, we

change the batch size to 10 and 20 while the total numbers of

training images are kept unchanged, and the results are shown in

Table 7 . All the models are fine-tuned from FCN-32s model. It can

be noted that the three fine-tuned models get similar performance

and the model trained with batch size one actually works better,

so we keep the batch size to one in our experiments. 

4.7. Employing a large template 

In this experiment, we attempt to use a large template when

training the pedestrian detector. We enlarge the pedestrian tem-

plate to 96 × 48 pixels instead of 64 × 32, so the spatial res-

olution of corresponding neural features becomes 24 × 12. With

larger template, the neural features of a window become finer in

spatial resolution, which makes it more discriminative. Since the

template has been 1.5 times larger than the original one, the slid-

ing window in detection stage is also enlarged. We must simul-

taneously enlarge the test images in order to find the small-size

pedestrians. 

The results are shown in the second row of Table 6 . Though

using the same neural features, the detector trained with large

template can improve the performance of the former one. For ex-

ample, there is a noticeable gain in FCN-Caltech-8s, which nearly

decreases 2 % in MR. It indicates that using an appropriate large

model size can boost the performance. 

Table 8 contains the detailed results of fusing detection re-

sults of two FCN-Caltech models using NMS. Combining the FCN-
altech-32s and FCN-Caltech-8s detection results can decrease the

R to 17.72%. When taking the detectors trained with large tem-

late into the consideration scope of fusion, we can further reduce

he MR to 16.50%. The two fused detectors are: (1) the normal size

ne trained using FCN-Caltech-32s features, with MR being 20.02%;

2) the large template one trained using FCN-Caltech-8s features,

ith MR being 18.79%. Fusing two detectors brings a considerable

mprovement in performance than single detector. 

.8. Comparison with other methods 

We compare the performance of our method with other popu-

ar detection approaches on the Caltech dataset [44] . The detection

esults of other approaches are acquired from Caltech pedestrian

etection dataset web. 3 The log-average miss rate (MR) is calcu-

ated by the same criterion as our method. The evaluation results

re shown in Fig. 7 . 

Using the original FCN models, we get a 22.07 % log-average

iss rate (MR) on this dataset by a single detector, outperform-

ng the channel features methods, such as ACF [25] and LDCF [13] .

otice that the ACF [25] and LDCF [13] both use 2.5 times training

ata as much as ours. They sample image every 4 frames from Cal-

ech training set while our interval is 10 frames. Our method also

utperforms some CNN based approaches, such as Joint-Deep [37] ,

DN [38] and SCF+AlexNet [40] . Katamari [3] and SpatialPooling+

17] are comparable to the performance of our basic method “Neu-

alFeatures”, but both of them use many features such as HOG, LBP,

patial covariance, optical flow, etc. Through fusing two detectors’

esults, “NF Fusion” can decrease the MR to 20.31 % and outper-

orm [3] and [17] . 

After fine-tuning the FCN models on Caltech pedestrian dataset,

here is a considerable improvement in performance. “Fine-tuned

F” achieves a 20.02 % MR (not shown in Fig. 7 ) using a nor-

al template and 18.79 % MR using a large template, outperform-

ng approaches mentioned above. By fusing detections of the two

ne-tuned models, “Fine-tuned Fusion” further decreases the MR

o 16.50 %. 

.9. Results on INRIA pedestrian datasets 

The image number of INRIA pedestrian dataset is much smaller

han that of the Caltech dataset [44] . We evaluate the performance

f different models on INRIA pedestrian dataset and show them in

able 9 . It can be noticed that FCN-32s model is the best performer

nd we choose it as the default model in following experiments. 

As for the dimensionality reduction, similar PCA method is ap-

lied to INRIA dataset [4] . A distinct effect is reflected in Table 10 .

hen N is 32, we can obtain a good trade-off between accuracy

nd complexity. The MR of 32 dimension is lower than that of

ther dimensions shown in table. The reason may be that the com-

onents after 32 are potentially noisy for this task, especially for

he 40–50 components. 

Table 11 contains some fusion results on INRIA test set. Note

hat the log-average miss rate (MR) of relu 3 − 3 detector is 14.14 %.

e observe that the fusion brings a more impressive gain in per-

ormance than the Caltech dataset [44] in Table 4 , especially for

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
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Fig. 7. Comparisons between our method and other popular pedestrian detection algorithms on the Caltech test set. “NeuralFeatures” is our basic method which uses neural 

features from FCN models. “NF Fusion” is the fusion of detectors which are trained with FCN neural features. While the “Fine-tuned NF” and “Fine-tuned Fusion” are similar 

to the previous two except that they utilize neural features from FCN-Caltech models. 

Table 10 

Performance on INRIA test set as dimension ( N ) varied. The original 256-dimension neu- 

ral feature of FCN-32s has a 14.14% MR. 

Dimension 10 20 30 32 40 50 60 120 

MR(%) 24.35 17.45 20.12 15.98 17.66 19.24 16.24 16.47 

Eigen (%) 35.12 50.87 61.08 62.72 68.13 73.12 77.11 90.16 

Table 11 

Log-average miss rate (MR) of fusing relu 3 − 3 detector with other layers detectors on the 

INRIA test set. 

relu 2 − 2 detector con v 3 − 1 detector con v 4 − 3 detector 

Original detection 18.46 16.24 24.21 

Fused with relu 3 − 3 12.37 12.77 11.97 

Table 12 

Log-average miss rate (MR) of detectors 

on INRIA test set. 

Detector V1 V2 Fused 

MR (%) 11.17 12.87 9.91 
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Table 13 

Log-average miss rate (MR) of FCN-Caltech models on INRIA test set. 

Model FCN-Caltech-32s FCN-Caltech-16s FCN-Caltech-8s 

MR (%) 12.98 13.54 13.68 
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he detector fused on con v 4 − 3 and relu 3 − 3 . And when it comes

o fusion in the same layer, we use detector V 1 and another detec-

or named “V 2”. V 2 is trained with the eighth and ninth variants in

ig. 6 , whose translation direction is opposite to V 1. The results are

hown in Table 12 . Optimal performance 9.91 % can be achieved

hrough fusion. 

Since we have fine-tuned FCN models on Caltech pedestrian

ataset, we want to see how they perform in INRIA dataset [4] . The
esults are shown in Table 13 . FCN-Caltech models achieve better

erformance than the original models. It proves the generalization

bility of our fine-tuned models. 

Fig. 8 shows the performances of our approach on INRIA dataset

4] , compared with some relevant methods. We show two of our

etectors in the figure, the best single detector V1 and the detector

used V1 and V2. Their MR are 11.17 and 9.91 %, outperforming

ost approaches including ACF [25] , LDCF [13] and SketchTokens
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Fig. 8. Comparisons between our method and other popular pedestrian detection algorithms on INRIA. “NeuralFeatures” is the detector V1 and “FusedDetector” is the fusion 

of V1 and V2. 

Table 14 

The comparison of detection speed of NeuralFeatures with other detectors. 

Method SCF + AlexNet [40] SDN [38] SpatialPooling [17] DeepPed [41] NeuralFeatures 

Time(s) 2.3 1–1.5 7.7 0.53 0.21 
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[50] . The exception is SpatialPooling [17] , which is on par with our

single detector but outperformed by our fused detector. 

4.10. Time analysis 

In this section, we analyse the time complexity quantitatively. 

4.10.0.3. Training time. Training process roughly consists of feature

extraction and classifier training. Extracting relu 3 − 3 feature of a

Caltech pedestrian image (640 × 480 pixels) takes about 0.053 s in

a single GPU. For training classifier, it takes about 70 min to train

depth-4 trees of boosting classifiers, and training depth-3 trees

take about 110 min. Our machine has 12 cores and we use parallel

processing. 

4.10.0.4. Detection time. Similarly, detection includes two steps:

extracting test image features and running detector on neural fea-

ture maps. The overall runtime of our approach to process a 640

× 480 image is about 0.21 s. The detection speed is summarized

in Table 14 , in which we list some other state-of-the-art detec-

tors. SCF+AlexNet [40] relies on SquaresChnFtrs [3] to produce pro-

posals, and proposing detections takes 2 s per image, which takes

most of the detection time. SDN [38] uses a HOG-based approach

to prune most candidate windows, and its runtime is about 1–1.5 s.

Some detectors, such as SpatialPooling [17] and Katamari [3] , are

very slow since they combine many features to achieve a good per-

formance. DeepPed [41] requires 0.53 s to process a single frame.

Thus our method is faster in detection speed than these methods. 
.11. Discussion 

Fig. 9 shows some examples of detection results. Our method

an detect some small-size pedestrians. The false positives are usu-

lly from upright objects which have similar appearances with

edestrians. It is interesting that our detector regards the person

n a billboard as pedestrian in the bottom of Fig. 9 (c). 

The advantage of our work is that we leverage the neural net-

ork to automatically learn a type of features which achieves

xcellent performance in pedestrian detection. This work outper-

orms most of traditional methods which use hand-crafted fea-

ures. There are two major drawbacks in our work. Firstly, the di-

ension of our neural feature is relatively high (256) compared

ith some hand-crafted features, such as ACF. Secondly, our sys-

em is not trained in an end-to-end manner. The two components,

he neural features extractor (FCN) and the AdaBoost classifier, are

rained sequentially and cannot be optimized jointly. The interac-

ion among them is not yet well explored. 

. Conclusions 

In this work, we propose a pedestrian detection approach based

n neural features derived from the fully convolutional network.

xperimental results on two benchmark datasets demonstrate the

ffectiveness of neural features for pedestrian detection. Using

edestrian data that only has bounding boxes labels, we train

he FCN models in a weakly-supervised way. The fine-tuned mod-

ls are adapted to pedestrian detection task and the neural fea-

ures produced by them can reduce the log-average miss rate (MR)
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Fig. 9. Example detections of our method on the Caltech test data. Green rectangles are true positives while red rectangles show false positives. Detection scores are shown 

on the top of each box. The results are produced by the detector using FCN-Caltech-32s neural features. For a better view, please see original PDF file. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ignificantly. In addition, we apply some fusion strategies whose

esults demonstrate that fusing two detectors can complement

ach other and enhance the performance. The experiments in this

aper also indicate that a large template can make the neural fea-

ures more discriminative and thus achieves a better result. The

roposed method can be applied to pedestrian detection in auto-

otive driving assistance systems. In future, we will focus on the

ptimization of performance and extend the method to detection

f other objects. 

cknowledgments 

The authors would like to thank the anonymous reviewers

or their valuable comments. This work was supported by the

ational Natural Science Foundation of China (Grant nos. 61503145

nd 61572207 ) and the CAST Young Talent Support Program. 

eferences 

[1] H. Drira , B.B. Amor , A. Srivastava , M. Daoudi , R. Slama , 3D face recognition
under expressions, occlusions, and pose variations, IEEE Trans. Pattern Anal.

Mach. Intell. 35 (9) (2013) 2270–2283 . 

[2] P.-W. Tsai , L.-H. Yang , J. Zhang , X. Xue , J.-F. Chen , J.-F. Chang , J.-S. Pan , An accu-
racy comparison between the time-series and the computational intelligence

models on the taiwan-central america free trade agreements, ICIC Expr. Lett. 7
(9) (2016) 1925–1932 . 

[3] R. Benenson , M. Omran , J. Hosang , B. Schiele , Ten years of pedestrian detec-
tion, what have we learned? in: Proceedings of the Workshops on Computer

Vision-ECCV, Springer, 2014, pp. 613–627 . 

[4] N. Dalal , B. Triggs , Histograms of oriented gradients for human detection, in:
Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition„ vol. 1, IEEE, 2005, pp. 886–893 . 
[5] X. Wang , T.X. Han , S. Yan , An HOG-LBP human detector with partial occlusion

handling, in: Proceedings of the IEEE 12th International Conference on Com-
puter Vision, IEEE, 2009, pp. 32–39 . 

[6] S. Zhang , C. Bauckhage , A. Cremers , Informed Haar-like features improve
pedestrian detection, in: Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2014, pp. 947–954 . 

[7] D.M. Gavrila , S. Munder , Multi-cue pedestrian detection and tracking from a
moving vehicle, Int. J. Comput. Vis. 73 (1) (2007) 41–59 . 

[8] M. Oren , C. Papageorgiou , P. Sinha , E. Osuna , T. Poggio , Pedestrian detection
using wavelet templates, in: Proceedings of the IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, IEEE, 1997, pp. 193–199 . 
[9] G.-S. Hong , B.-G. Kim , Y.-S. Hwang , K.-K. Kwon , Fast multi-feature pedestrian
detection algorithm based on histogram of oriented gradient using discrete

wavelet transform, Multimedia Tools Appl. (2015) 1–17 . 

[10] J. Li , W. Gong , W. Li , X. Liu , Robust pedestrian detection in thermal infrared
imagery using the wavelet transform, Infrared Phys. Technol. 53 (4) (2010)

267–273 . 
[11] Q. Liu , J. Zhuang , J. Ma , Robust and fast pedestrian detection method for far-in-

frared automotive driving assistance systems, Infrared Phys. Technol. 60 (2013)
288–299 . 

[12] P. Dollár , Z. Tu , P. Perona , S. Belongie , Integral channel features., in: Proceed-

ings of BMVC, vol.2, 2009, p. 5 . 
[13] W. Nam , P. Dollár , J.H. Han , Local decorrelation for improved pedestrian de-

tection, in: Proceedings of the Advances in Neural Information Processing Sys-
tems, 2014, pp. 424–432 . 

[14] R. Benenson , M. Mathias , T. Tuytelaars , L. Gool , Seeking the strongest rigid de-
tector, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2013, pp. 3666–3673 . 

[15] S. Zhang , R. Benenson , B. Schiele , Filtered channel features for pedestrian de-
tection, in: Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, IEEE, 2015, pp. 1751–1760 . 
[16] D. Park , C. Zitnick , D. Ramanan , P. Dollár , Exploring weak stabilization for mo-

tion feature extraction, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2882–2889 . 

[17] S. Paisitkriangkrai , C. Shen , A. van den Hengel , Strengthening the effectiveness
of pedestrian detection with spatially pooled features, in: Proceedings of the

Computer Vision–ECCV, Springer, 2014, pp. 546–561 . 

[18] R. Benenson , M. Mathias , R. Timofte , L. Van Gool , Pedestrian detection at 100
frames per second, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, IEEE, 2012, pp. 2903–2910 . 
[19] J. Long , E. Shelhamer , T. Darrell , Fully convolutional networks for semantic seg-

mentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440 . 

20] P. Viola , M.J. Jones , D. Snow , Detecting pedestrians using patterns of motion

and appearance, Int. J. Comput. Vis. 63 (2) (2005) 153–161 . 
[21] T. Kobayashi , A. Hidaka , T. Kurita , Selection of histograms of oriented gra-

dients features for pedestrian detection, in: Proceedings of the Interna-
tional Conference on Neural Information Processing, Springer, 2007, pp. 598–

607 . 
22] S. Walk , K. Schindler , B. Schiele , Disparity statistics for pedestrian detection:

combining appearance, motion and stereo, in: Proceedings of the European

Conference on Computer Vision, Springer, 2010, pp. 182–195 . 
23] P.F. Felzenszwalb , R.B. Girshick , D. McAllester , D. Ramanan , Object detection

with discriminatively trained part-based models, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (9) (2010) 1627–1645 . 

[24] V.-D. Hoang , M.-H. Le , K.-H. Jo , Hybrid cascade boosting machine using variant
scale blocks based hog features for pedestrian detection, Neurocomputing 135

(2014) 357–366 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100005232
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0024


432 C. Li et al. / Neurocomputing 238 (2017) 420–432 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N  

 

 

 

 

 

 

 

 

 

[25] P. Dollár , R. Appel , S. Belongie , P. Perona , Fast feature pyramids for object de-
tection, IEEE Trans. Pattern Anal. Mach. Intell. 36 (8) (2014) 1532–1545 . 

[26] S. Yao , S. Pan , T. Wang , C. Zheng , W. Shen , Y. Chong , A new pedestrian detec-
tion method based on combined HOG and LSS features, Neurocomputing 151

(2015) 1006–1014 . 
[27] P. Dollár , S. Belongie , P. Perona , The fastest pedestrian detector in the west., in:

Proceedings of BMVC, vol.2, Citeseer, 2010, p. 7 . 
[28] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-

volutional neural networks, in: Proceedings of the Advances in Neural Infor-

mation Processing Systems, 2012, pp. 1097–1105 . 
[29] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv preprint arXiv: 1409.1556 (2014). 
[30] P. Barros , D. Jirak , C. Weber , S. Wermter , Multimodal emotional state recog-

nition using sequence-dependent deep hierarchical features, Neural Netw. 72
(2015) 140–151 . 

[31] R. Girshick , J. Donahue , T. Darrell , J. Malik , Rich feature hierarchies for accurate

object detection and semantic segmentation, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 580–587 .

[32] R. Girshick , Fast R-CNN, in: Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 1440–1448 . 

[33] S. Ren , K. He , R. Girshick , J. Sun , Faster R-CNN: towards real-time object detec-
tion with region proposal networks, in: Proceedings of the Advances in Neural

Information Processing Systems, 2015, pp. 91–99 . 

[34] X.-Y. Chen , X.-Y. Peng , J.-B. Li , Y. Peng , Overview of deep kernel learning based
techniques and applications, J. Netw. Intell. 1 (3) (2016) 83–98 . 

[35] A.G. Wilson , Z. Hu , R. Salakhutdinov , E.P. Xing , Deep kernel learning, in: Pro-
ceedings of the 19th International Conference on Artificial Intelligence and

Statistics, 2016, pp. 370–378 . 
[36] P. Sermanet , K. Kavukcuoglu , S. Chintala , Y. LeCun , Pedestrian detection with

unsupervised multi-stage feature learning, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, IEEE, 2013, pp. 3626–3633 . 
[37] W. Ouyang , X. Wang , Joint deep learning for pedestrian detection, in: Pro-

ceedings of the IEEE International Conference on Computer Vision, IEEE, 2013,
pp. 2056–2063 . 

[38] P. Luo , Y. Tian , X. Wang , X. Tang , Switchable deep network for pedestrian de-
tection, in: Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, IEEE, 2014, pp. 899–906 . 

[39] A . Angelova , A . Krizhevsky , V. Vanhoucke , A .S. Ogale , D. Ferguson , Real-time
pedestrian detection with deep network cascades, in: BMVC, 2015, pp. 32–1 . 

[40] J. Hosang , M. Omran , R. Benenson , B. Schiele , Taking a deeper look at pedes-
trians, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 4073–4082 . 
[41] D. Tomè, F. Monti , L. Baroffio , L. Bondi , M. Tagliasacchi , S. Tubaro , Deep con-

volutional neural networks for pedestrian detection, Signal Processing: Image

Communication 47 (2016) 4 82–4 89 . 
[42] R. Girshick , J. Donahue , T. Darrell , J. Malik , Rich feature hierarchies for accurate

object detection and semantic segmentation, in: Proceedings of the Computer
Vision and Pattern Recognition, 2014 . 

[43] S. Xie , Z. Tu , Holistically-nested edge detection, in: Proceedings of IEEE Inter-
national Conference on Computer Vision, 2015 . 

[44] P. Dollar , C. Wojek , B. Schiele , P. Perona , Pedestrian detection: an evaluation
of the state of the art, IEEE Trans. Pattern Anal. Mach. Intell. 34 (4) (2012)

743–761 . 

[45] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,
T. Darrell , Caffe: Convolutional architecture for fast feature embedding, in: Pro-

ceedings of the 22nd ACM international conference on Multimedia, ACM, 2014,
pp. 675–678 . 
[46] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-
houcke , A. Rabinovich , Going deeper with convolutions, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9 . 
[47] I. Jolliffe , Principal component analysis, Spring-Verlag, New York, 1986 . 

[48] Y. Ke , R. Sukthankar , PCA-SIFT: a more distinctive representation for local im-
age descriptors, in: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol.2, IEEE, 2004, pp. II–506 . 
[49] P. Dollár, Piotr’s Computer Vision Matlab Toolbox (PMT), ( http://vision.ucsd.

edu/ ∼pdollar/toolbox/doc/index.html ). 

[50] J.J. Lim , C.L. Zitnick , P. Dollár , Sketch tokens: a learned mid-level representation
for contour and object detection, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, IEEE, 2013, pp. 3158–3165 . 

Chao Li received the B.S. degree in Electronics and In-

formation Engineering from Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China in 2013. He

is currently a Ph.D. student in the School of Electronic In-

formation and Communications, HUST. His research areas
mainly include object detection and medical image anal-

ysis. 

Xinggang Wang is an Assistant Professor of School of
Electronic Information and Communications of Huazhong

University of Science and Technology. He received his

Bachelors’ degree in communication and information sys-
tem and Ph.D. degree in Computer Vision both from

Huazhong University of Science and Technology. From
May 2010 to July 2011, he was with the Department

of Computer and Information Science, Temple University,
Philadelphia, PA, as a visiting scholar. From February2013

to September 2013, he was with the University of Cali-

fornia, Los Angeles, as a Visiting Graduate Researcher. He
is a Reviewer of IEEE Transaction on Cybernetics, Pattern

Recognition, Computer Vision and Image Understanding,
eurocomputing, CVPR, ICCV, ECCV, etc. His research interests include computer vi-

sion and machine learning. 

Wenyu Liu is now a professor and associate dean of the

School of Electronic Information and Communications,

HUST. He received the B.S. degree in Computer Science
from Tsinghua University, Beijing, China, in 1986, and the

M.S. and Ph.D. degrees, both in Electronics and Informa-
tion Engineering, from Huazhong University of Science

and Technology (HUST), Wuhan, China, in 1991 and 2001,
respectively. His current research areas include computer

vision, multimedia, and sensor network. He is a senior

member of IEEE. 

http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0028
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034a
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034a
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034a
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034a
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034a
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035j
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035j
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035j
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035j
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035j
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035j
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035s
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035s
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035s
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035s
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035s
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035d
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0035f
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0041
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0041
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0042
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0042
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0042
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30271-0/sbref0043

	Neural features for pedestrian detection
	1 Introduction
	2 Related work
	3 Neural features
	3.1 Extracting neural features from FCN
	3.2 Training pedestrian detectors using neural features
	3.3 Applying pedestrian detectors to neural features
	3.4 Fine-tuning FCN models on pedestrian dataset
	3.5 Feature dimensionality reduction

	4 Experiments
	4.1 Datasets
	4.2 Experiments with different models and layers
	4.3 Data augmentation on positive training samples
	4.4 Dimension reduction
	4.5 Fusion of detections
	4.5.1 Fusing detection results of different layers
	4.5.2 Fusing detection results of the same layer

	4.6 Fine-tuning FCN models
	4.7 Employing a large template
	4.8 Comparison with other methods
	4.9 Results on INRIA pedestrian datasets
	4.10 Time analysis
	4.11 Discussion

	5 Conclusions
	 Acknowledgments
	 References


